Gulf Nova Scotia Fleet Planning Board 44 River John Rd. River John, NS , BOK 1N0 Pictou Landing First Nation 6533 Pictou Landing Road Site 6 Box 55, RR#2 NS, BOK 1X0 PEI Fishermen's Association 420 University Avenue, Suite 102 Charlottetown, PE C1A 725 Maritime Fishermen's Union 408 rue Main St. Shediac, NB, Canada, E4P 2G1

Honourable Minister Margaret Miller Nova Scotia Environment PO Box 442 Halifax, NS B3J 2P8

March 8th, 2019

Dear Hon. Minister Miller:

Please find below concerns expressed by the Gulf Nova Scotia Fleet Planning Board, the PEI Fishermen's Association, the Maritime Fishermen's Union and Pictou Landing First Nation. The four groups together represent approximately 3,000 commercial fishermen who make their living in the Northumberland Strait.

Following a thorough review of Northern Pulp Nova Scotia's (NPNS) EA Registration Documents, both by us and by independent experts, we are extremely concerned with NPNS's proposal to pump effluent into the Northumberland Strait. As detailed below, as well as in the attached review by Dr. Battison and in the separately submitted expert review by SVS Ltd., NPNS's EA Registration Documents provide no assurance that marine life will not be harmed, or that our fishing industry and our way of life will not be irrevocably damaged.

We implore you to reject NPNS's proposal as presented and require NPNS to file a **thorough and rigorous Environmental Assessment Report, per subsection 13(1)(d) of the Environmental Assessment Regulations,** given the project's high risk of environmental effects. Failing this, the lack of sufficient information in NPNS's proposal on the impacts of the effluent on marine life and the health of the Northumberland Strait requires that you, at a minimum, deem the Registration Documents as insufficient and require more information, per subsection 13(1)(a) of the Environmental Assessment Regulations.

In addition to the concerns expressed below, please find attached Dr. Andrea Battison's review of the EA registration documents from an animal health perspective with a focus on crustaceans (Appendix A), along with Dr. Battison's list of publications (Appendix B). Also attached are documents obtained through FOIPOP requests and are referenced in the comments below (Appendix C). Furthermore, SVS Ltd. is submitting an expert review of the NPNS EA Registration Document under separate cover. SVS Ltd. was contracted by several fishermen's organizations to conduct an independent expert review of NPNS's new ETF proposal.

Fishing Industry's Concerns with Northern Pulp's EA Registration Document:

1. EA Registration Document fails to assess potential impact of effluent on crustaceans and other marine life.

In her February 25, 2019 review (submitted separately), veterinarian Dr. Battison notes that with respect to the potential sublethal effects of exposure of crustaceans to NPNS's pulp mill effluent, NPNS relied on studies that "were limited in scope, used BKME different from that anticipated to be produced by the NPNS, and did not include sublethal toxicity or generational testing."

Additionally, Dr. Battison notes that "anticipated levels of [chemicals of potential concern] in the effluent are not provided in the EA, precluding assessment of toxicity to crustaceans...."

Dr. Battison concludes that,

Given the limited, and often dated, information available regarding the potential for adverse effects on the health, in particular growth (moulting) and reproduction, of marine species of commercial interest such as the American lobster and rock crab, upon exposure to the mill effluent to be produced by the proposed facility at NPNS, further studies (acute, sublethal, and generational) are recommended.

Furthermore, the EA Registration Document fails to explain how NPNS will improve upon the Cycle 7 EEM Results regarding sublethal toxicity testing, which indicated that "there are chronic effects seen in laboratory test species at relatively low effluent concentrations..." (Appendix J, page 144).

Moreover, NPNS's own EA consultant, Dillon Consulting, recommended to NPNS in a February 14th 2018 letter that,

Conducting research on lobster larvae, ... needs to be completed to demonstrate to regulators that these were properly considered and stakeholder concerns are being addressed as much as reasonable possible.... The level of stakeholder (commercial fishers) concern regarding lobsters necessitates the need for increased scientific understandings.... (FOIPOP 2018-07644-TIR2, page 476 – 479, attached in Appendix C, pages 1 - 4).

Despite this recommendation from NPNS's own consultant, NPNS failed to carry out this research.

RECOMMENDATION 1: The Minister cannot accept the EA Registration Document as submitted given the effluent's potential harm to crustaceans and other marine life and given the lack of information to demonstrate whether this harm is negligible or significant.

2. NPNS's proposal to test effluent toxicity sometime within 24 months after the new ETF is operational (Appendix H, page 90) presents an unacceptable risk of significant harm to marine life.

NPNS fails to indicate how it will mitigate negative impacts of the effluent on marine life that may occur before effluent testing is conducted. Given that NPNS has failed to disclose what the effluent leaving the new ETF will contain, forgoing monitoring of the effluent for up to 24 months poses an unacceptable

risk to marine life in the Strait. If effluent contains chemicals of concern that bioaccumulate in marine life, NPNS's proposed testing of the effluent may be too late to stop or mitigate the potential harm these chemicals present.

RECOMMENDATION 2: The Minister cannot accept the EA Registration Document as submitted because NPNS's proposal to test effluent toxicity sometime within 24 months after NPNS starts pumping effluent into the Northumberland Strait presents too high of an unmitigable risk to marine life and the fishing industry.

3. NPNS presented misleading statements to the public about the quality of effluent to be discharged from the proposed ETF, thereby compromising NPNS's public engagement process.

NPNS repeatedly made public statements to the effect that the effluent from the proposed ETF would be no worse than the effluent currently entering Northumberland Strait. For example:

- In a letter to the Town of Westville obtained through a FOIPOP request, NPNS's Director of Corporate Communications wrote "Northern Pulp has been releasing effluent into the Northumberland Strait for five decades. ... Treated effluent that will be discharged under the proposed new design will see an even greater improvement..." (FOIPOP 2018-07644-TIR4, page 1104 – 1105, attached in Appendix C, pages 5 - 6).
- In a letter to Advocate News, November 24th 2017, NPNS's Director of Corporate Communications wrote "... Treated effluent has been discharged into the Northumberland Strait for 50 years; it is important to recognize that current effluent discharge into the region has not impacted fishing activities nor will it in the future." (FOIPOP 2018-07644-TIR5, page 1175 – 1177, attached in Appendix C, pages 7 - 9).
- In a letter to CBC reporters, November 15th 2017, NPNS's Director of Corporate Communications wrote the following response to a reporter's question "Are [the fishermen] right to be concerned?": "Treated effluent has been flowing through Boat Harbour and into the Northumberland Strait for over 50 years. The new treatment facility and diffused outfall will reduce the impact on the Strait. ..." (FOIPOP 2018-07644-TIR5, page 1268 1271, attached in Appendix C, pages 10 -13) (emphasis added).
- In a letter to NPNS's EA consultant company Dillon Consulting Ltd., November 26, 2017, NPNS wrote: "... mark the existing outfall clearly on the map with a thick red line and put a sentence on the outfall page that says something like 'New outfall and diffuser located xx nautical miles from the existing outfall ... We want the NB and PEI fishermen to clearly see it is there already." (FOIPOP 2018-07644-TIR5, page 1170 1171, attached in Appendix C, pages 14 15).

Moreover, NPNS's message that the new ETF will not increase impact on the Strait was echoed in Minister of Environment (as he was then) Iain Rankin's form letter sent to citizens concerned with the proposed ETF. He wrote in a January 18, 2018 letter: "... I am sure you are aware that effluent from the pulp mill has been treated by the Boat Harbour effluent treatment facility and then discharged into the Northumberland Strait for the last 50 years. ..." (FOIPOP 2018-06097-ENV, page 88, attached as Appendix C).

In stark contrast to these statement to the public through the media, internal statements within NPNS indicated that NPNS believed that the effluent from the new system would be "worse" that the effluent currently entering the Northumberland Strait. For example:

- In a letter to NPNS's EA consultant Dillon Consulting Ltd., NPNS's Technical Manager stated "Some say effluent quality will be worse than today because of all the polishing that is happening across the BH basin – and they are correct to some extent..." (FOIPOP 2018-07644-TIR4, page 1037 – 1041, attached in Appendix C, pages 17 - 20).
- In a letter to Gary Porter, senior employee with NS's Department of Transportation and Infrastructure Renewal, November 15th 2017, NPNS's Technical Manager stated "Right now mill has BH as large buffer zone, so effluent at point C is not comparable to new effluent. Need to compare to Point D or speak to difference between current point C and D. ... [Consultant] KSH study that says AST [activated sludge treatment / proposed for new ETF] quality not significantly different than ASB [aerated stabilization basin, ie, Boat Harbour / current ETF]." (FOIPOP 2018-07644-TIR5, page 1274 – 1277, attached in Appendix C, pages 21 - 24).
- In a 2014 report by KSH consultants commissioned by NPNS, KSH states: "A large, natural final polishing/stabilization basin follows prior to release to the Northumberland Straight [sic]. ...
 Point C of the effluent treatment system also benefits from the settling effect of Boat Harbour prior to Point D, so the impact on marine environments is even less pronounced." (FOIPOP 2018-07644-TIR6, page 1815 and 1825, attached in Appendix C, pages 25 26).

Given that NPNS acknowledged that the effluent to be released into the Northumberland Strait might be worse than they currently release into the Strait via Boat Harbour, NPNS's statements to the public that the effluent from the new ETF would be better or at least no worse are disingenuous and misleading and thereby compromised NPNS's public engagement process. There is no way to know what concerns the public may have expressed if the public had been given the full account of the relative quality of the effluent to be discharged from the proposed ETF.

RECOMMENDATION 3: The Minister cannot accept the EA Registration Document as submitted because NPNS compromised their public engagement process by providing misleading statements to the public about the relative quality of the effluent to be discharged into the Northumberland Strait from the proposed ETF.

4. NPNS has not demonstrated how the proposed ETF will accomplish the "polishing" effect on the effluent currently achieved through the 25 – 30 day settling in Boat Harbour before released into the Northumberland Strait.

The EA Registration Document notes that NPNS's effluent currently undergoes a "polishing" effect thanks to the 25 to 30 day settling period in Boat Harbour before the effluent reaches the Strait (Appendix J, page 23). However, the Document fails to describe how the proposed ETF will provide for

these same effluent quality benefits, or whether the lack of a "polishing" effect could cause significant environmental impacts.

Furthermore, the EA Registration Document (Appendix I4, page 24) also notes that the 2017 yearly average test results for TSS (Total Suspended Solids), BOD (Biochemical Oxygen Demand) and COD (Chemical Oxygen Demand) at point C were 1563, 1300 and 36,506 kg/day respectively, and that the values for these parameters at Point D were 775, 792, and 34,250 kg/day, respectively. These results indicate that TSS is 2 times larger at Point C than at Point D, that BOD is 1.6 times larger at Point C than at Point D. The EA Registration Document fails to indicate how the advantages in reduced TSS, COD and BOD due to Boat Harbour will be achieved in the proposed ETF, or whether increased TSS, COD and BOD relative to Point D will have a negative and significant impact on the environment.

RECOMMENDATION 4: The Minister cannot accept the EA Registration Document as submitted because NPNS fails to demonstrate whether the lack of "polishing" effect and reductions in TSS, BOD and COD currently achieved by the settling time in Boat Harbour will cause significant environmental impacts, or whether the "polishing" and TSS, BOD and COD reduction effect will be achieved through other means in the proposed ETF.

5. NPNS fails to describe what the effluent will be composed of when it is released into the Northumberland Strait via the proposed ETF.

NPNS notes in the EA Registration Document that it rejected the possibility of discharging effluent into Pictou Harbour due to "the accumulation and increasing concentration of residual contaminants contained in the treated effluent, over time" (page 68). NPNS fails to describe what the "residual contaminants" in the treated effluent will be. It is impossible to determine the extent of harmful impacts on the environment that may occur given this lack of information.

RECOMMENDATION 5: The Minister cannot accept the EA Registration Document as submitted because NPNS fails to provide information about what potentially harmful components will be contained in the effluent.

6. NPNS failed to demonstrate that ice scour will not damage the pipeline and/or the diffusers.

The EA Registration Documents indicate that the pipeline route to Pictou Harbour was abandoned due to risk of ice scour damage (pages 47 and 70), yet the Documents fails to demonstrate that ice scour risk will be negligible at the Caribou Harbour site. Appendix E notes that "... an outfall pipe is proposed to be extended parallel to the ferry route to a deeper water location that <u>might help avoid potential issues of ice scour</u>" (page 9) [emphasis added].

Given that Northumberland Strait is ice-bound for a significant portion of the year, a compromised pipe and/or diffuser could result in a large amount of effluent released in an unplanned manner for a months-long duration before the problem is identified and fixed, potentially resulting in significant environmental impacts. RECOMMENDATION 6: The Minister cannot accept the EA Registration Document as submitted because NPNS fails to provide sufficient evidence that ice scour will not compromise the integrity and function of the pipeline and the diffusers.

7. NPNS fails to explain how it will deal with its effluent between February 1, 2020 and the date by which the new ETF is operational.

The EA Registration Document indicates that the new ETF will not be operational by the January 31, 2020 deadline to close Boat Harbour (page 48). Yet, the Document fails to provide a plan for the intervening time between the closure of Boat Harbour and commencement of the new ETF. Without such a plan, the proposal lacks an air of reality. Furthermore, NPNS's plan for dealing with its effluent between February 1st 2020 and the commencement date of the new system could have significant environmental impacts; these impacts cannot be evaluated in the absence of a plan from NPNS.

RECOMMENDATION 7: The Minister cannot accept the EA Registration Document as submitted because NPNS fails to provide a plan for its effluent for the time between February 1, 2020 and the commencement of the new ETF.

8. NPNS fails to respond to Nova Scotia Environment's requirement to address all potential substances of concern, not just those outlined in the Federal Pulp and Paper Effluent Regulations.

In a letter from Nova Scotia Environment to NPNS's General Manager on June 14th 2017, NSE issued the following requirement to NPNS, at NPNS's request, with the subject line "Minimum Requirements of a Receiving Water Study":

... The mixing zone principle does not apply to hazardous wastes or dangerous goods. Mixing zones also do not apply to bio-accumulative or persistence [sic] substances and despite the allowance of a mixing zone, effluent shall not be acutely toxic. It should be noted that in this particular case, a receiving water study must address all potential substances of concern not limited to those outlined in the Federal Pulp & Paper Effluent Regulations.

... In order to protect important aquatic communities ... no conditions within the mixing zone will be permitted which:

a. are acutely lethal to aquatic life;

b. cause irreversible responses which could result in detrimental post-exposure effects;

c. result in bioconcentration of toxic materials which are harmful to the organism or its consumer;

d. attract organisms to the mixing zones, resulting in a prolonged exposure;

e. create a barrier to the migration of fish or other aquatic life.

... Mixing zones should not impinge upon ... important fish spawning and/or fishing areas.

... When background water quality conditions at a proposed mixing zone site are degraded, effluent discharge requirements established must ensure, at the very least, that background water quality is not further degraded.

The Department requires enough information to ensure each of the above concerns is adequately addressed. Specifically including but not limited to:

- o information about the effluent (substances of potential concern, volumes, etc.);
- information about the receiving water (physical characteristics, size, upstream and downstream water quality); ...

The information provided to the Department should include one year's worth of effluent characterization data. ... Water quality considerations take precedence when contaminant discharges exceed the assimilative capacity of the receiving waters, even if the discharged loadings are within the treatment technology based effluent requirements based on the guidelines, regulations or policies. Receiving-water based effluent requirements also take precedence when ambient levels of contaminants are above acceptable levels. ...

All effluent discharges must not be acutely lethal. (FOIPOP 2018-07644-TIR5, page 1422 – 1424, attached in Appendix C, pages 28 - 31)

The EA Registration Document fails to respond to the requirements detailed in NSE's letter to NPNS. The Document fails to provide detailed information about the effluent, fails to demonstrate how the mixing zone will not impinge upon important fish spawning and fishing areas, and fails to provide one year's worth of effluent characterization data. Without such information, the Minister cannot make an informed decision on whether the effluent will be acutely lethal to aquatic life, cause irreversible responses which could result in detrimental post-exposure effects, or result in bioaccumulation of toxic materials, among other potential impacts.

RECOMMENDATION 8: The Minister cannot accept the EA Registration Document as submitted because NPNS fails to respond to Nova Scotia Environment's specific information requirements to be included in the Document and therefore the Minister does not have sufficient information to determine whether the project will result in significant adverse environmental impacts.

All of the above is respectfully submitted to the Nova Scotia Minister of Environment, the Honourable Margaret Miller, within the 30-day public comment period with respect to Northern Pulp Nova Scotia's proposed Effluent Treatment Facility.

Sincerely,

Robert H. Jenkins

Prince Edward Island Fishermen's Association, President

Carl Allen Maritime Fishermen's Union, President

Honnie Heighton

Gulf Nova Scotla Fleet Planning Board, President

hid Undrea mue

Andrea Paul Pictou anding First Nation, Chief

Tel: 902.330.6878 Fax: 902.367.6878 www.CrustiPath.com

Review of the Environmental Assessment Registration Document Regarding Northern Pulp Nova Scotia's Proposed Replacement Effluent Treatment Facility from an Animal Health Perspective with a Focus on Crustaceans

Prepared for:

Harvester Working Group Attn: Melanie Giffin Prince Edward Island Fishermen's Association 420 University Ave, Charlottetown, PE C1A 7Z5 (902) 566-4050

Prepared By:

Dr. Andrea Battison Principal Consultant CrustiPath

February 25, 2019

DISCLAIMER

This document entitled 'Review of the Environmental Assessment Registration Document Regarding Northern Pulp Nova Scotia's Proposed Replacement Effluent Treatment Facility from an Animal Health Perspective' with a Focus on Crustaceans was prepared by CrustiPath for the Harvester Working Group (the Client). Any reliance on this document by any third party is strictly prohibited. The material in it reflects CrustiPath's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between CrustiPath and the Client. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. In preparing the document, CrustiPath did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that CrustiPath shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

1.1

. .

Table of Contents

EXECUTIVE SUMMARY	1
SCOPE OF REVIEW	2
CONCEPTS OF HEALTH	2
PULP MILL EFFLUENT EFFECTS ON FINFISH HEALTH	3
PULP MILL EFFLUENT EFFECTS ON CRUSTACEAN HEALTH	4
COMMENTS ON SELECTED SECTIONS OF THE ENVIRONMENTAL ASSESSMENT SUBMITTED BY NPNS	7
RECOMMENDATIONS	9
REFERENCES	10

.

1 1 1 1 1

.

1. 1. 1. 1. 1.

(a) (a) (b) (b) (b)

(a) (a) (b) (b) (b)

.

EXECUTIVE SUMMARY

CrustiPath was engaged by the Harvester Working Group to review the January 2109 Environmental Assessment (EA) on the Northern Pulp Nova Scotia replacement effluent facility. The focus was to be on the health of the fish, crustaceans and bivalves; specific to local commercially important species including an understanding of how contaminants in the effluent may negatively affect the reproduction and growth rate. After a preliminary review of available information and given the very short timeline available, it was decided to focus the review on the changes known or potentially possible to happen to crustaceans, particularly American lobsters

Although improvements in treatment of BKME have decreased acute toxicity (mortality) to fish, effluent from pulp and paper mills continues to release bioactive substances that affect fish metabolism and reproductive performance. The identity of the responsible compound(s) remains undetermined. The roles of hormones e.g., estrogens, androgens, anti-estrogens, anti-androgens, neuroactive substances and altered nutritional effects are possibilities. There are reports of moult inhibition in crustaceans exposed to estrogenic, androgenic, antiestrogens and anti-androgens. Five studies on American lobster (*Homarus americanus*) exposed to BKME from Abercrombie Point between 1968 and 1973 suggested: larvae were relatively resistant to BKME and adult lobster more so; no significant change in larval numbers after opening of the mill; and, that lobster movement and feeding behaviour were unchanged at low levels of BKME. The latter could also be interpreted as an inability to detect and avoid potentially deleterious BKME. These studies were limited in scope, used BKME different from that anticipated to be produced by the NPNS, and did not include sublethal toxicity or generational testing. These limitations were noted in Appendix R of the EA, but not mentioned in Section 8.12.3.3. There are few data on the sublethal effects of exposure of crustaceans to the pulp mill effluents created today e.g., elemental or total chlorine free, secondary biological treatment, particularly in marine environments.

Section 9 of the EA (Human Health Evaluation) used model studies to identify cadmium, mercury, selenium, (and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F)) as chemicals of potential concern (COPC) that might accumulate in tissue of fish exposed to effluent. While the intent was to examine the fish tissue from a food safety perspective, it could also be concluded that these chemicals also represent a health risk to species in the receiving waters. With respect to crustaceans, cadmium has been shown to negatively effect moulting and growth, reproduction, and cause variation in hemolymph glucose (sugar) levels, possibly via an 'endocrine disruption' effect. Anticipated levels of these COPCs in the effluent are not provided in the EA, precluding assessment of possibility toxicity to crustaceans.

The current Environmental Effects Monitoring (EEM) program uses the caged blue mussels (*Mytilus edulis*) as a representative invertebrate for testing purposes. Bivalves are different from crustaceans in many ways. It would be desirable to know if bivalves and crustaceans respond similarly to BKME for EEM purposes.

Development of a new reef structure creating habitat for lobsters and other fish as a result of the pipe infrastructure is mentioned. Whether or not this would encourage fish to stay near the outflow in an area of maximal effluent and whether this could have a negative, neutral or positive effect on fish health is not discussed.

Given the limited, and often dated, information available regarding the potential for adverse effects on the health, in particular growth (moulting) and reproduction, of marine species of commercial interest such as the American lobster and rock crab, upon exposure to the mill effluent to be produced by the proposed facility at NPSNS, further studies (acute, sublethal, and generational) are recommended.

Scope of review

The overall pertinent sections of the environmental assessment (EA) were reviewed: Section 8.12 Marine and Fish Habitat, Section 9 Human Health Evaluation, Appendix G Proposed EEM Program, Appendix H Proposed Follow Up and Monitoring Program, Appendix R Scientific Literature BKME Effects on Lobster, and the 2016 EEM report and summary documents. Literature searches on: the historical effects of BKME on finfish, bivalves and crustaceans; known or proposed mechanisms of action of BKME; effects of BKME on finfish, bivalves and crustacean since the introduction of new effluent treatment measures; and known or suspected effects on crustaceans of the chemicals of potential concern (COPC) identified in Section 9 of the EA. There is heavy reliance on the review paper by Hewitt at al in 2006 regarding the chemistry and effects of BKME. The conclusions and recommendations are based primarily on the information provided in the EA and how it relates to published information on crustaceans rather than a global review of potential health effects to marine species exposed to BKME.

CONCEPTS OF HEALTH

Animal, or human, health can be loosely defined as an absence from disease. Disease can be defined as the impairment of normal function or structure of a living organism. A more specific definition of health is provided by the World Health Organization (WHO) and states the following "Health is a state of complete <u>physical, mental and social</u> well-being and not merely the <u>absence of disease or infirmity</u> (Grad, 2002). The presence of disease be assessed by looking at changes in physiological systems e.g., respiratory, reproductive, immune, integument (skin, shell, carapace), muscular, skeletal and nervous systems, and behaviour. Testing methods can include: physical examination; changes in weight; collection of blood (or hemolymph) samples to test e.g., immune function, organ function or toxin accumulation; pathology exams at the gross or microscopic (histology) level; gene expression; and, more recently metabolomics.

PULP MILL EFFLUENT EFFECTS ON FINFISH HEALTH

The review paper by Hewitt et al. (Hewitt, Parrott, & McMaster, 2006), summarises the path of research of two identified responses in finfish exposed to pulp mill effluent 1) induction of detoxification enzymes (suggesting exposure to a toxin) in fish tissues, and 2) reproductive effects e.g., "smaller gonad (ovary) and egg size, increased age to maturation, decreased levels of reproductive steroid hormones, and altered expression of secondary sex characteristics". The earlier focus on absorbable organic halides (AOX) switched to bioactive substances released from the wood during pulp digestion (in kraft mills, present in black liquor and chemical recovery condensates). Of note is the study of the **AhR** (aryl hydrocarbon receptor), cytochrome **cyt p450**, P-4501A1, and **EROD** (ethoxyresorufin O-deethylase) molecules which are involved in the detoxification process.

The authors note that despite the improved quality of effluent with decreases in compounds producing acute toxicity (mortality), organochlorine discharges and AOX levels, effects persist "..., effluents from pulp and paper mills continue to release into Canadian aquatic receiving environments bioactive substances that affect fish metabolism and reproductive performance" (Hewitt et al., 2006). The authors also note in their conclusions that "The bioactive substances in pulping processes appear to be derived from original pulp digestion and/or from residual lignin removal during bleaching. The <u>identities of the responsible compounds have remained elusive</u>, thereby impairing any evaluation of the effectiveness of secondary treatment and other process changes in the industry".

A review in 2010 (van den Heuvel, 2010) indicated that reproductive impairment noted in fish exposed to pulp and paper effluent, although decreasing, continues and the causative agent(s) remains to be definitively identified. Exposure to hormones (estrogenic, anti-estrogen, and androgens) derived from the wood itself, neuroendocrine compounds that interfere with hormone balance, or nutritional effects are possible mechanisms under consideration. The metabolic disruption response (decreased gonad size associated with increased liver size and greater body condition) "remains a prevalent pattern in data generated as part of Canada's federally mandated Environmental Effects Monitoring Program" (van den Heuvel, 2010).

A long term review of effluent at a mill in New Zealand concluded that subtle effects on fish reproductive physiology, while substantially decreased, continue to be observed even with extensive efforts to improve the quality of the effluent (van den Heuvel, Slade, & Landman, 2010). The example described was that of swim-up fry being substantially shorter and lighter than fry from the reference site. This was attributed to a chronic, eight- month, exposure of the maternal fish to the test effluent, suggesting a next-generation effect.

Interestingly, Davis et al. (Davis et al., 2013), used metabolomics (the study of a set of metabolites within a cell, tissue, or organism) to demonstrate short term response of fathead minnows to short term changes in effluent levels in Lake Superior during a temporary shut down of a paper and pulp mill in the region. The effect was most pronounced in male fish... *"Thus, we demonstrate the potential utility of field-based metabolomics for performing biologically based exposure monitoring and evaluating remediation efforts occurring throughout the Great Lakes and other ecosystems"*. This represents another potential way to assess fish health.

. . .

PULP MILL EFFLUENT EFFECTS ON CRUSTACEAN HEALTH

The effects of BKME on crustacean physiology are not as well studied as in fish. Crustaceans have a complex endocrine (hormone) system that is responsible for regulating reproduction, growth and moulting, and metabolism as in vertebrate species. The effects of pollutants (pesticides, herbicides, effluents, heavy metals) on the physiology of these animals are not as well documented as in fish, birds and mammals. Review papers by Fingerman (Fingerman, Jackson, & Nagabhushanam, 1998) and Rodríguez (Rodríguez, Medesani, & Fingerman, 2007) concisely summarise some of these endocrine (hormone) disruptive effects and the known or suspected mechanisms in crustaceans.

Disturbance or disruption of the normal processes of reproduction and moulting were the most common effects studied. While many of these were ascribed to pesticides, xenoestrogens (synthetic or naturally occurring compounds that mimic estrogen), testosterone (an androgen), juvenoids (synthetic compounds designed to mimic the structure or effect of insect juvenile hormone; often used as insecticides) the impacts of the metals cadmium, and to a lesser extent, copper, mercury and zinc are also described (Rodríguez et al., 2007). In their concluding remarks, the authors stated "crustacean molting can be inhibited by any one of several organic compounds (including androgenic, estrogenic, as well as antiandrogens and antiestrogens) as well by some heavy metals." The need for further study to determine mechanisms, with an emphasis for multigenerational studies to assess long-term processes such as reproduction and growth was emphasised (Rodríguez et al., 2007).

Cadmium has been associated with moult inhibition in the crab, *Chasmagnathus granulatus* and *Daphnia magna*, and inhibition of ovarian growth in fiddler crabs (*U. pugalotor*) exposed to cadmium for two weeks (Rodríguez et al., 2007). Cadmium is suspected to inhibit moulting by inhibiting the secretion of the moulting hormone ecdysone (Rodríguez et al., 2007). Lethal concentrations (LC-50 at 96 hours) of cadmium, copper, and mercury for stage I *Homarus americanus* larvae were determined to be 78 μ g/L, 48 μ g/L, and 20 μ g/L, respectively (Johnson & Gentile, 1979). Heavy metals can inhibit food intake by small crustaceans (Rodríguez et al., 2007). Changes (transient increases (hyperglycemia) in acute exposures, decreases in chronic exposures) in hemolymph (blood) glucose levels in response to metal exposure have been documented in crayfish and in the shrimp *Palaemon elegans* exposed to mercury, cadmium, and copper crabs (Rodríguez et al., 2007). Chronic (two week) exposure to cadmium in the crab, *Chasmagnathus granulatus* appeared to interfere with crustacean hyperglycemic hormone (CHH) – the crustacean 'stress hormone' and lowered hemolymph glucose levels.

Information on the specific effect of BKME on American lobsters is extremely scarce with all five papers found during a literature search being written before 1973 (McLeese, 1970, 1973; Scarratt, 1969; Sprague & McLeese, 1968a; Sprague JB, 1968b).

Comparisons of surface plankton tows conducted in 1966, before opening of the pulp mill at Abercrombie Point, and in 1968 after the mill had been in operation determined that the variation in total catch of 746 larvae in 1968 from 1814 larvae in 1966 was within the range of normal catch fluctuations in the Strait (Scarratt, 1969). The study concluded that *"the mill effluent was not having any immediate, direct effect on the abundance and distribution of lobster larvae in the Pictou area."* No

measurements (weight, length), gross or microscopic observations for abnormalities or adverse effects are reported.

One day old American lobster larvae and adult lobsters were exposed to a range of diluted BKME and acute toxicity evaluated (Sprague JB, 1968a). The BKME represented a mixture of material from the bleachery 'chlorination effluent', (40%), bleachery 'caustic extraction effluent' (30%) and effluent from the kraft screen room sewer (30%) and neutralised to pH 7. The authors concluded that larvae were reasonably resistant to BKME concentrations below 10% and that adults were "even more resistant". When comparing the responses of salmon parr (*Salmo salar* L.) and *Homarus americanus* larvae to biologically oxidised BKME, lobster larvae were described as more sensitive than parr at the one week time point, suggesting different responses by different animals to the same conditions (Sprague & McLeese, 1968b). There was no histologic examination of tissues to assess for injury, long term, sublethal, or generational effects evaluated for survivors in either study.

Adult American lobsters to exposed to 10% - 20% BKME (spillway material) in a test tank passed through the BKME-seawater boundary 98 out of 103 approaches (McLeese, 1970). Of the five initial reversals, lobsters passed through the boundary on subsequent approaches. The conclusion was that 10% - 20% BKME did not affect movement of adult lobster. A later study examined if BKME would alter the feeding response of American lobster in the presence of BKME (McLeese, 1973). It was concluded that *"exposure to low concentrations of BKME for short periods does not reduce the response of lobsters to freeze dried cod solution or, if so, to a minor extent only"*. The investigator also indicated *"the possibility that long term exposure might affect the response, or that other behavior stimulated by chemoreceptors may be affected, was not tested"*. An additional interpretation of these results is that failure to avoid the effluent might represent a risk to the health of the lobster if there is a component in the effluent that could generate an adverse effect in the lobster.

While these studies did investigate the effect of BKME on American lobster specifically, it is important to note that the effluent composition has changed over the past 50 years (Hewitt et al., 2006; van den Heuvel, 2010) and probably does not reflect what would be entering the receiving waters in the current proposal. The studies were relatively limited in scope and depth – essentially looking at acute toxicity data, a behaviour response, and one abundance and distribution study. These represent very limited investigations by current standards with a notable lack of sublethal, chronic exposures or examination of generation effects, assessment of growth or reproduction indices, etc.. The relevancy of the findings in these studies to the composition of the effluent, which is not clearly defined within the EA, from the proposed NPNS effluent treatment facility is uncertain.

A study of the decapod crustacean, *Pacifastacus leniusculus*, a freshwater crayfish, demonstrated induction of cytochrome p450 in response to dioxin (TCCD) exposure (injected) (Ashley, Simpson, Holdich, & Bell, 1996). The response may have involved the AhR system as noted in vertebrates. This is an interesting finding as it could mean that crustaceans have the potential to respond to BKME in a manner similar to fish. Expression of genes for cytochrome p450-form has been studied in American lobster (Tarrant, Franks, & Verslycke, 2012). This suggests that physiologic responses of American lobster could be studied at the gene expression level as in finfish.

.

More recently, Chamorro et al. (Chamorro et al., 2016) investigated the sublethal effects of chlorine-free kraft mill effluents using the small freshwater crustacean, *Daphnia magna* as the model species. This is a tiny, freshwater, planktonic, water flea used in studies for ecologic monitoring purposes. The study was conducted to address the concern of biologically active compounds that might remain in wastewater despite the use of chlorine-free bleaching and biological treatment of wastewater. A chronic feeding test and two standardised tests - an acute lethality test, OECD 202 (Organisation for Economic Cooperation and Development., 2004) and a chronic assay testing reproduction, OECD 211 (Organisation for Economic Co-operation and Development., 2012) were used. The latter "uses reproduction as a basic biological endpoint, but the test design allows for the measurement of other relevant variables like mortality and growth". The investigators reported mixed results with stimulatory effects on some parameters at low concentrations of effluent while reproductive effort was reduced at higher concentrations of effluent. The potential for this to be a hormetic effect, where a biphasic dose response to an environmental agent characterized by a low dose stimulation or beneficial effect and a high dose inhibitory or toxic effect was considered (Mattson, 2008).

The reproductive assay and the chronic feeding test are directly and indirectly looking at animal health and examining for sublethal effects. Further investigation as to the applicability of these tests to a marine environment and/or extrapolation of any results to larger decapods and species of commercial interest requires further investigation and is beyond the scope of the current report.

Taken together, these studies suggest the potential for impact on crustacean health by several organic compounds (androgenic, estrogenic, antiestrogenic, antiandrogenic) which have suspected roles in impaired reproductive potential in finfish exposed to BKME. Metals such as cadmium that could be present in BKME are also recognised to impact growth and reproduction in crustaceans.

Comments on Selected Sections of the Environmental Assessment Submitted by NPNS

Section 8.12.3.3 Characterization of Residual Effects

The report on scientific literature of BKME effects on lobster (Appendix R) summarises literature on responses of American lobster, *Homarus americanus* to BKME and related salinity, temperature and dissolved oxygen changes. The limitations and the need for further study, including sublethal testing using current BKME was indicated in the executive summary and in the report's concluding remarks as follows: *"Studies to more accurately assess the potential for impact to adult lobsters including lethality, behavior, and sublethal impacts are recommended to be carried out with current treated BKME. Completing studies of lobster larvae with today's treated BKME would allow for confirmation and better understanding of potential lethal and sublethal effects."*

These recommendations are valid and appropriate; however, do not appear in Section 8.12.3.3 (Marine and Fish Habitat. Impact Evaluation/Effects Assessment. Characterisation of Residual Effects) where much of Appendix R is referenced.

The concept of a reef effect at the site of the pipe is mentioned as a beneficial aspect of the change "from a soft-bottomed benthic community to hard-bottom community". It was also noted that "*Marine plants, which are important components of habitat for lobster and other commercially important species, will also colonize the hard substrate of in-water structures.*" While it may provide new habitat, the potential to encourage animals to feed and remain close to the outflow site might have the unintended consequence of increasing the exposure of animals to the effluent. The studies by McLeese suggested that adult American lobsters would detect and consume feed in the presence of BKME of the day (McLeese, 1970, 1973). The effects on marine animal health of this behaviour are unknown and would be an area for further evaluation.

Environmental Effects Monitor (EEM) for Monitoring Stage (Appendix G)

Appendix G provides an outline of the components of an EEM program should the NPNS EA submission be approved. It states that modifications from the current EEM will be required to address the change in treatment plant and discharge structure. The current EEM uses caged bivalves (*Mytilus edulis*), blue mussels, as *"Caged bivalves provide a reasonable alternative to finfish to assess the effects of pulp and paper effluent on fish* (Environment Canada, 2010) when marine discharges are used .

The assays to be conducted on caged mussels include: "Various morphological measurements will be made on individual mussels (shell length, shell width, shell height, whole animal weight wet (WAWW), soft tissue fresh weight, and, gonad somatic index (GSI)) in order to generate measures of key potential effect endpoints, such as reproductive effort, growth, energy storage and survival."

As the crustaceans, American lobster and rock crab, represent two of the commercial resources identified in the EA, it would be reassuring to see evidence that the caged bivalve system is also an approved alternative for crustacean species. This information could not be found in the EA.

Proposed Follow Up and Monitoring Program (Appendix H)

"Follow up and Monitoring will include: sublethal toxicity testing of treated effluent; phytoplankton and zooplankton community assessments; benthic invertebrate community sampling; water quality sampling; fish community and fisheries resource characterization; and fish and shellfish tissue chemistry investigations". More detailed monitoring is proposed in the event that "monitoring results indicate that either end-of-pipe effluent quality data or receiving environment data deviate from those predicted in the EA the potential consequences (if any) of such deviations would be investigated. In this instance, additional or modified performance monitoring components could be proposed and/or implemented, as appropriate" or "Alternatively, where EA-related predictions are confirmed reduced monitoring effort may be indicated".

Tissue chemistry monitoring would include collecting tissues from potential species of interest including lobster, rock crab, scallop, blue mussel, softshell clam, oyster, and locally relevant finfish (e.g., Eel, Smelt, Gaspereau, Striped Bass, Mackerel, Atlantic Herring). *"Tissue specimens will be collected from the exposure area (i.e., the area potentially influenced by mill effluent) and up to two reference areas that are beyond the potential zone of influence of the effluent. Overall, it is envisioned that 5 to 8 replicate samples of 3 to 4 species from 2 to 3 sampling areas will be submitted for analysis of the following parameters: total phenols; total metals contents; low level mercury; and, resin and fatty acids.*

Tissue chemistry testing will generate data on the levels of these chemicals in fish tissues (presumably for use in food safety assessments) but is only an indirect assessment on the health of the fish and shellfish themselves. If the sublethal testing is limited to bivalves, it is unknown is this would adequately reflect effects on crustacean health.

Section 9.0 Human Health Evaluation (as pertains to marine health)

As part of the review of human health risks, a report by Toxikos prepared for a pulp mill deemed to have similar characteristics as NPNS was used to determine candidate chemicals of potential concern (COPC) for human health within the effluent anticipated to be produced by NPNS. The initial list had 39+ compounds listed which was reduced to four identified in Section 9.2.4.2. *"The outcome of the screening approach to identify substances that may accumulate in fish was a greatly reduced list of candidate COPCs. The final COPCs selected in the Toxikos HHRA study were: Cadmium, Mercury, Selenium, polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F)"*. The Toxikos report indicated that *"PCDD/F was included due to regulatory and public concerns only, as it was noted there is no technical justification to include PCDD/F in effluent from an ECF mill..."*. No information on projected levels of these metals or PCDD/F were provided in the EA so it is not possible to compare them to known LC50s in American lobster larvae for cadmium, mercury, and copper.

There are studies (see Pulp Mill Effluent Effects on Crustacean Health, this report) describing adverse effects of metals, particularly cadmium, on crustacean health with respect to moulting, reproduction and the glycemic/stress response. Given these studies, and the statement in the EA that these metals could accumulate in fish tissues, these metals could be considered COPC with regards to crustacean health.

Conclusions & Recommendations

Taken together, these studies suggest the potential for impact on crustacean health by several organic compounds (androgenic, estrogenic, antiestrogenic, antiandrogenic) which have suspected roles in impaired reproductive potential in finfish exposed to BKME. Metals such as cadmium that could be present in BKME are also recognised to impact growth and reproduction in crustaceans.

Due to the limited and dated information available regarding the potential for adverse effects on the health of the marine species of commercial interest, in particular growth and reproduction of crustaceans such as the American lobster and rock crab, upon exposure effluent to be produced by the proposed replacement effluent treatment facility at NPNS, further studies (acute and sublethal) are recommended.

References

- Ashley, C. M., Simpson, M. G., Holdich, D. M., & Bell, D. R. (1996). 2,3,7,8-tetrachloro-dibenzo-p-dioxin is a potent toxin and induces cytochrome P450 in the crayfish, Pacifastacus leniusculus. *Aquatic Toxicology*, *35*(3–4), 157–169. https://doi.org/10.1016/0166-445X(96)00014-8
- Canada, E. (2010). Pulp and paper environmental effects monitoring (EEM) Technical Guidance Document Revised April 2013.
- Chamorro, S., López, D., Brito, P., Jarpa, M., Piña, B., & Vidal, G. (2016). Sublethal Effects of Chlorine-Free Kraft Mill Effluents on Daphnia magna. *Bulletin of Environmental Contamination and Toxicology*, *97*(6), 843–847. https://doi.org/10.1007/s00128-016-1936-y
- Davis, J. M., Collette, T. W., Villeneuve, D. L., Cavallin, J. E., Teng, Q., Jensen, K. M., ... Ekman, D. R. (2013). Field-Based Approach for Assessing the Impact of Treated Pulp and Paper Mill Effluent on Endogenous Metabolites of Fathead Minnows (*Pimephales promelas*). *Environmental Science & Technology*, 130830150520002. https://doi.org/10.1021/es401961j
- Fingerman, M., Jackson, N. C., & Nagabhushanam, R. (1998). Hormonally-regulated functions in crustaceans as biomarkers of environmental pollution. *Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology, 120*(3), 343–350. https://doi.org/10.1016/S0742-8413(98)10072-5
- Grad, F. P. (2002). The Preamble of the Constitution of the World Health Organization. *Bulletin of the Worlld Health Organization*, *80*(12), 982.
- Hewitt, L. M., Parrott, J. L., & McMaster, M. E. (2006). A decade of research on the environmental impacts of pulp and paper mill effluents in Canada: Sources and characteristics of bioactive substances. *Journal of Toxicology and Environmental Health - Part B: Critical Reviews*, 9(4), 341– 356. https://doi.org/10.1080/15287390500195976
- Johnson, M. W., & Gentile, J. H. (1979). Acute toxicity of cadmium, copper, and mercury to larval American lobsterHomarus americanus. *Bulletin of Environmental Contamination and Toxicology*, 22(1), 258–264. https://doi.org/10.1007/BF02026939
- Mattson, M. P. (2008). Hormesis defined. *Ageing Research Reviews*, 7(1), 1–7. https://doi.org/10.1016/j.arr.2007.08.007
- McLeese, D. W. (1970). Behaviour of Lobsters Exposed to Bleached Kraft Mill Effluent. *Journal of the Fisheries Research Board of Canada*, 27(4), 731–736. https://doi.org/10.1139/f70-076
- McLeese, D. W. (1973). Response of Lobsters *Homarus americanus* to Odor Solution in the Presence of Bleached Kraft Mill Effluent. *Journal of the Fisheries Research Board of Canada*, *30*(2), 279–282. https://doi.org/10.1139/f73-046
- Organisation for Economic Co-operation and Development. (2004). 202. Daphnia sp. Acute Immobilisation Test. OECD Publishing.
- Organisation for Economic Co-operation and Development. (2012). *Test no. 211 : Daphnia magna reproduction test*. OECD Publishing.

- Rodríguez, E. M., Medesani, D. A., & Fingerman, M. (2007). Endocrine disruption in crustaceans due to pollutants: A review. *Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology*, *146*(4), 661–671. https://doi.org/10.1016/j.cbpa.2006.04.030
- Scarratt, D. J. (1969). Lobster Larvae off Pictou, Nova Scotia, Not Affected by Bleached Kraft Mill Effluent. Journal of the Fisheries Research Board of Canada, 26(7), 1931–1934. https://doi.org/10.1139/f69-177
- Sprague, J. B., & McLeese, D. W. (1968). Different toxic mechanisms in kraft pulp mill effluent for two aquatic animals. *Water Research*, 2(11), 761–765. https://doi.org/10.1016/0043-1354(68)90010-9
- Sprague JB, D. M. (1968). Toxicity of kraft pulp mill effluent for larval and adult lobsters, and juvenile salmon. *Fisheries Research Board of Canada*, (985), 1–15. Retrieved from https://www.sciencedirect.com/science/article/pii/0043135468900092
- Tarrant, A. M., Franks, D. G., & Verslycke, T. (2012). Gene Expression in American Lobster (*Homarus americanus*) with Epizootic Shell Disease. *Journal of Shellfish Research*, *31*(2), 505–513. https://doi.org/10.2983/035.031.0210
- van den Heuvel, M. R. (2010). Recent Progress in Understanding the Causes of Endocrine Disruption Related to Pulp and Paper Mill Effluents. *Water Quality Research Journal*, 45(2), 137–144. https://doi.org/10.2166/wqrj.2010.017
- van den Heuvel, M. R., Slade, A. H., & Landman, M. J. (2010). Summary of a decade of research on the effects of a New Zealand pulp and paper millon reproduction in fishes. *Water Quality Research Journal of Canada*, 45(2), 123–135.

Dr. Andrea Battison – Publications & Presentations

Papers in Refereed Journals

Daoud D, Battison A, Natalie, LR, Van Geest JL. (2016). Repeated sublethal exposures to the sea lice pesticide Salmosan[®] (azamethiphos) on adult male lobsters (*Homarus americanus*) causes metabolic dysfunctions, functional hypoxia, and mortality. Ecotoxicol Environ Saf. 34(1), Dec:106-115

Simon CJ, Fitzgibbon QP, Battison A, Carter CG, Battaglene SC. 2015. Bioenergetics of nutrient reserves and metabolism in spiny lobster juveniles *Sagmariasus verreauxi*: Predicting nutritional condition from hemolymph biochemistry. Physiol Biochem Zool 88(3). ePub March 19, 2015. DOI: 10.1086/681000

Ciaramella M, Battison A, Horney B. 2014. Measurement of tissue lipid reserves in the American lobster *(Homarus americanus)*: Hemolymph metabolites as potential biomarkers of lipid reserves in the American lobster, *Homarus americanus*. J Crus Biol. 34(5):629-638.

Battison A. 2013. Subcuticular uric acid deposition in an American lobster (*Homarus americanus*): A case report. Vet Pathol. May; 50(3):451-6.

Battison AL, Summerfield R. 2008. Isolation and partial characterisation of four novel plasma lectins from the American lobster *Homarus americanus*. Dev Comp Immunol. 33:198-204

Battison AL, Deprés B, Greenwood SJ. 2008. Ulcerative enteritis in *Homarus americanus*: Case report and molecular characterisation of intestinal aerobic bacteria of apparently healthy lobsters in live storage. J Invert Path. 99(2): 129-135.

Battison AL, Summerfield R, Patrzykat A. 2008. Isolation and characterisation of two antimicrobial peptides from haemocytes of the American lobster *Homarus americanus*. Fish Shellfish Immunol. 25: 181-187.

Battison A. 2007. Apparent pseudohyperkalemia in a Chinese Shar-Pei dog. Vet Clin Pathol. (36)1, 89-93.

Battison A. 2006. Tissue distribution and hemolymph activity of six enzymes in the American lobster (*Homarus americanus*): Potential markers of tissue injury. J Shellfish Res. 25(2), 553-560.

Battison AL, Cawthorn R, Horney B. 2004. Response of American lobsters (*Homarus americanus*) to infection with a field isolate of *Aerococcus viridans* var. *homari* (Gaffkemia): Survival and haematology. Dis Aquat Org. Nov; 61(6): 263-268.

Battison AL, Cawthorn R, Horney B. 2004. Classification of *Homarus americanus* hemocytes and the use of differential hemocyte counts in lobsters infected with *Aerococcus viridans* var. *homari*. J Invert Path; 84: 177-197.

Battison AL, Cawthorn R, Horney B, MacKenzie A. 2002. Mushroom tyrosinase as a control material for phenoloxidase assays used in the assessment of crustacean 'health'. J Shellfish Res Jun 21(1): 295-298.

Battison A, MacMillan R, MacKenzie A, Rose P, Cawthorn R, Horney B. 2000. Use of injectable potassium chloride for euthanasia of American lobsters (*Homarus americanus*). Comp Med Oct; 50(5):545-50.

Archer FJ, Battison A. 1997. Difference in electrophoresis patterns between plasma albumins of the cockatiel (*Nymphicus hollandicus*) and the chicken (*Gallus gallus domesticus*). Avian Path; 26: 865-870.

Battison A, Buckzowski S, Archer FJ. 1996. The potential use of glutamate dehydrogenase activity for the evaluation of liver disease in the cockatiel (*Nymphicus hollandicus*). Vet Clin Pathol. 25(2):43-47.

Battison AL, Machin KL, Archer FJ. 1996. Ascites and hepatic cirrhosis in a cockatiel (*Nymphicus hollandicus*). Am Anim Hosp Assoc. May-Jun;32(3):237-42.

Battison AL, Buckzowski S, Archer FJ. 1996. Plasma bile acid concentration in the cockatiel. Can Vet J. Apr 37 (4): 233-4

Grahn BH, Szentimrey D, Battison A, Hertling R. 1995. Exophthalmos associated with frontal sinus osteomyelitis in a puppy. J Am Anim Hosp Assoc. Sep-Oct; 31(5):397-401.

Conference Proceedings (Oral Presentation)

Battison A, Lavallée J. 2011. A summary of hemolymph plasma biochemistry profile results from American lobsters (*Homarus americanus*) in Atlantic Canada (2007-2010). 9th International Conference and Workshop on Lobster Biology and Management, Bergen, Norway.

Burton M, Battison A, Lavallée J. 2011. Physiological assessment of American lobsters (Homarus americanus) held in a specialized live seafood transport system. 9th International Conference and Workshop on Lobster Biology and Management, Bergen, Norway.

Summerfield R, Battison A. 2011. Examination of protein expression during ovary maturation in American lobsters (*Homarus americanus*). 9th International Conference and Workshop on Lobster Biology and Management, Bergen, Norway.

Battison A. 2009. Hemolymph triglyceride concentration: A potential non-lethal method to assess ovary maturation in the American lobster (*Homarus americanus*). ACCESS conference. University of Prince Edward Island.

Battison A, Summerfield R, Patrzykat A. 2007. Isolation of two antimicrobial peptides from *Homarus americanus* hemocytes. 8th International Conference and Workshop on Lobster Biology and Management. Charlottetown, Canada.

Battison A. 2005. Relative tissue distribution and haemolymph activity of six enzymes in *Homarus americanus* - potential markers of tissue injury. 6th International Crustacean Congress (ICC6), Glasgow, Scotland.

Battison A, Horney B, Cawthorn R. 2002. Hemocytes of *Homarus americanus* stained with a modified Wright-Giemsa stain: description and comparison to current classification schemes. National Shellfisheries Association Conference, Mystic, CT.

Battison A and Erb H. 1998. Automated method for the determination of rabbit serum albumin on the Hitachi 911. The American College of Veterinary Pathologists, 49th Annual Meeting, St. Louis, MO.

Battison A, Stokol T, Blue JT, van Gessel Y, McDonough S. 1998. Chronic myelomonocytic leukemia in a horse. The American College of Veterinary Pathologists, 49th Annual Meeting, St. Louis MO.

Conference Proceedings (Poster Presentations)

Battison A, Burton M, Comeau M, Silva A, Summerfield R. 2011. Hemolymph triglyceride and cholesterol concentrations as potential aids to determine ovary maturity in the American lobster. 9th International Conference and Workshop on Lobster Biology and Management, Bergen, Norway.

Battison A. Subcuticular uric acid deposition in an American lobster (*Homarus americanus*): A case report. 2009. Annual meeting of the American College of Veterinary Pathologists and American Society of Veterinary Clinical Pathology, Monterey, CA.

Summerfield R, Battison A. 2009. Bromocresol Green binds to lobster (*Homarus americanus*) hemocyanin. Annual meeting of the American College of Veterinary Pathologists and American Society of Veterinary Clinical Pathology, Monterey, CA.

Summerfield R, Battison A. 2007. Development of an ELISA for the measurement of an N-acetyl-Dglucosamine binding protein in plasma of *Homarus americanus*. 8th International Conference and Workshop on Lobster Biology and Management. Charlottetown, Canada.

Battison A., Summerfield R. 2007. Isolation and characterisation of an N-acetyl-D-glucosamine binding protein from *Homarus americanus* plasma. 8th International Conference and Workshop on Lobster Biology and Management. Charlottetown, Canada.

Battison A, Cawthorn R, Horney B. 2007. Bumper Car Disease - Comparison of Experimental and Naturally Acquired Infections. 8th International Conference and Workshop on Lobster Biology and Management. Charlottetown, Canada. Battison A. 2005. Pseudohyperkalemia and poikilocytosis in a Chinese Shar Pei dog. American College of Veterinary Pathologists and American Society of Veterinary Clinical Pathologists Annual Meeting, Boston, USA.

Battison A, Cawthorn R, Horney B, MacKenzie A. 2003. Plasma prophenoloxidase in American lobsters (*Homarus americanus*): variation in a natural population and changes associated with two infectious diseases. American College of Veterinary Pathologists and American Society of Veterinary Clinical Pathologists Annual Meeting, Banff, AB.

Horney B, Battison A, MacKenzie A. 2002. Cytocentrifuge preparations: An alternate method to examine the hemocytes of the American lobster *Homarus americanus*. National Shellfisheries Association Conference, Mystic, CT.

Battison A, MacKenzie A, MacMillan R, Cawthorn R, Horney B. 2001. Gaffkemia: Old disease, new findings. Graduate Studies and Research Days, Charlottetown, PE.

Battison A. 2000. Plasma Prophenoloxidase Activity in American Lobsters (*Homarus americanus*) Infected with the Ciliate *Anophyroides haemophila*. Graduate Studies and Research Days, Charlottetown, PE.

Professional Presentations - Invited

Battison A. 2011. Lobster Blood Biochemistry: There's more to it than just protein! Fishermen & Scientists Research Society Annual General Meeting. Truro, NS.

Evaluating Hemolymph: Clinical Pathology in the American Lobster. 2010. ASVCP Veterinary Laboratory Professionals. Baltimore, MD.

Crustacean Immunity & Health Assessment Techniques in the American Lobster (*Homarus americanus*). 2006. Saint Francis Xavier Biology Department Seminar Series.

Management of laboratory samples: Improving their diagnostic value. 1997. Vermont Veterinary Medical Association. Killington, VT.

Lay Extension

Battison A & Lavallée J. 2011. Lobster health in early life stages. Atlantic Lobster Sustainability Foundation Meeting. Moncton. NB.

Battison A. 2011. Hemolymph Biochemistry: An Indicator of Nutritional Status? 7th Annual Lobster Science Workshop. Charlottetown, PE.

Battison A. 2009. Investigation of Mushy Tail in American lobsters. 5th Annual Lobster Science Workshop. Charlottetown, PE.

Battison A. 2008. In the Lab. 4th Annual Lobster Science Workshop, Moncton, NB.

Battison A. 2006. Ecosystem Health: Lobster as a Sentinel Species. 3rd Annual Lobster Science Workshop, Charlottetown, PE.

Battison A. 2005. Biochemistry profiles- Another tool for assessment of lobster health? 2nd Annual Lobster Science Workshop, Charlottetown, PE.

Battison A. 2001. Questions and answers about blood (hemolymph) protein. Lobster Blood Protein Workshop, Shelburne, NS.

Battison A. 2001. Refractometers: Uses and limitations. Lobster Blood Protein Workshop Shelburne, NS.

Contract Research Reports (selected)

Moriyasu M, Allain R, Battison A, Boudreau M, Allard J, Gerber RP, Courtenay S and Hall D. 2015. Establishment of biological baseline information for snow crab *Chionoecetes opilio* in the southern Gulf of St. Lawrence and on the Scotian Shelf. OERA/DFO Collaborative Research Project #300-120-09-34.

Battison A, Greenwood S, and Lavalleé J. 2005. White Spot Syndrome Virus: Diagnostics, surveillance and transmission - A literature review. Prepared for the Fisheries and Oceans Canada.

DILLON

February 14, 2018

20(1) Technical Manager Northern Pulp Nova Scotia 20(1) northernpulp.com

Northern Pulp Nova Scotia Class EA for the Replacement Effluent Treatment Facility Additional Project Management and Science Scope

As discussed, the Environmental Assessment (EA) for the replacement effluent treatment facility is more intricate than understood in the request for proposals as defined by Northern Pulp Nova Scotia (NPNS). Now that the initial phase is complete NPNS and Dillon have a grounded understanding of what is necessary to manage this assessment and address the input from the public and stakeholders.

Conducting research on lobster larvae, and potential alternatives to pipe discharge into the Strait needs to be completed to demonstrate to regulators that these were properly considered and stakeholder concerns are being addressed as much as reasonably possible.

The attached Table 1 highlights what we had suggested in our original proposal and the status to date regarding the science portion of this assignment. To date we have been flexible to the needs of Northern Pulp and the community and we believe this project needs Dillon to continue to be flexible going forward. To that end we have completed tasks as things proceeded and we now need to acknowledge that effort as well as understand the changing needs moving forward.

Ongoing Responsiveness to NPNS Needs

Our original proposal accounted for monthly team meetings. On average, weekly meetings have occurred since project initiation, with multiple calls occurring during critical phases. Dillon consumed the budget allocated for team meetings with NPNS by the end of December.

Based on the ongoing changes and challenges with this assignment we now propose weekly team meetings for the duration of the project (January – June inclusive) for 20(1) and 20(1) While some weeks of the project may only require one hour meetings, weeks leading up to engagement sessions will require additional or longer duration meetings.

137 Chain Lake Drive Suite 100 Halifax, Neva Scotta Canada B35 1185 Tolophone 902,450,4000 Fax 902,450,2008

476

477

Northern Pulp Nova Scotia February 14, 2018

We have included additional meeting time for 20(1) and other specialists but at a less frequent level.

Options Assessment

The stakeholders, public, and politicians have called for a more thorough presentation of why options to the marine outfall were dismissed during the design process. KSH had documented why a closed loop system is not possible. Optional disposal avenues other than a marine outfall had not been documented (e.g., pumping or trucking treated effluent for disposal offsite). Dillon reviewed and documented options in consultation with NPNS and developed a memo that was provided to the Fishers. Additional options have been requested by the Fishers and will be reviewed. The options review will be summarized into a newsletter for the public.

Lobster Literature and Researcher Review

A lobster larvae study has been called for by commercial fishers and concerned environmental community groups. As a first step, Dillon completed a literature review and contacted researchers who may have current studies underway to understand what information is available. With this understanding, a future workplan would be developed to complete any additional study required, which may include university research, and submitted to NPNS for approval.

Government and Agencies

As requested by Department of Fisheries and Oceans (DFO), and for the benefit of the success of the project, Dillon will continue to engage directly with DFO. We will provide DFO with regular updates and propose to hold two more in person meetings.

At the request of NPNS, we will also connect more frequently with Nova Scotia Environment (NSE), Environment and Climate Change Canada (ECCC), Nova Scotia Department of Natural Resources (DNR) and Transport Canada (TC) in an effort to understand potential future approval requirements as we proceed. We have allocated time to attend one meeting with NSE and DNR together, two meetings (one in person in Moncton and one via teleconference) with TC and one meeting with ECCC.

All meetings will be attended by two of 20(1) and/or 20(1)

In an addition, we propose to prepare two detailed information packages as the project proceeds to update regulatory agencies and municipal governments of how the project is progressing. This will include newsletters and documentation supporting potential future approval requirements. We believe this is a worthwhile step in order to expedite future approvals.

As requested, Dillon has also completed a summary outlining the potential regulatory requirements beyond the Environmental Assessment. Included in the original scope of work was the identification of future permits and approvals only. The summary

Northern Pulp Nova Scotia Page 3 February 14, 2018

provided identified project interactions, applicability and approval timelines and commentary on potential project and schedule risk.

Risk Based Approach

We understand that NPNS will be initiating the development of their environmental effects monitoring program. The effort described in this task will help bridge the additional effort required to support communications and the additional questions anticipated surrounding the environmental monitoring program. A risk based approach will be developed that determines how the proposed monitoring program framework addresses the potential environmental risks that may be associated with the marine outfall, and also determines if additional studies or data collection programs merit consideration towards understanding the potential for marine ecological risk. 20(1) ..., one of Dillon's senior Risk Assessors, and a toxicologist, will support the project team for this task. We believe this effort will assist our communications with the Fishers and other stakeholders and provide important inputs to the EA as we will be able to provide more articulate and accurate explanation of the potential risks associated with the discharge from the outfall.

As an example, public questions have arisen regarding the content of metals in the discharge. Based on available data (receiving water study, NPNS monitoring data, EEM studies) and will review potential metals or other effluent components levels in the context of potential marine environmental risk.

At this time we are still assessing the scope for this portion of the work. A level of effort will be prepared in consultation with NPNS for approval.

Level of Effort

The proposed level of effort associated with this renewed engagement plan is as follows:

Task	Proposed Budget
Project Management	21(1)(a)(i), (b),(c)(i)(ii)(iii)
Options Assessment	
Lobster Literature and Researcher Review	
Government Agencies Liaison (including regulatory summary)	
Risk Based Approach	
Total (excluding HST)	

Northern Pulp Nova Scotia Page 4 February 14, 2018

Team

The project will continue to be led by 20(1) with project coordination by 20(1). We have added 20(1) to cur project team to assist with literature research and 20(1) for the risk based approach.

Closure

This workplan documents the level of effort that we have already expended and our proposed next steps. We trust that this meets with your needs at this time and we look forward to continuing to work with Northern Pulp.

Yours truly,

DILLON CONSULTING LIMITED

Project Manager

Our file: 17-6461

November 30, 2017

Town of Westville 2042 Queen Street Westville, Nova Scotia

RE: Westville urges caution to Northern Pulp

Dear Mayor, Council and CAO

It is most unfortunate that the article published within today's news whereby the Town of Westville, through Deputy Mayor Lynn MacDonald, has taken a position against the proposed effluent treatment facility replacement project prior to having any exact knowledge about the science and design of the proposal.

Northern Pulp has offered sessions to all local municipal officials in July (Mayor and CAO) and again in October (Mayor, Council and CAOs) to provide detailed information about the projects design and progress to this point. There was no representation of Westville at the July session. In October, one Westville councilor was in attendance at the update in which attendees were provided an extensive update.

Speaking specifically to the comments attributed to Westville, through Deputy Mayor Lynn MacDonald

A.

MacDonald made a motion to council that they write to provincial and federal ministers requesting that they "not allow Boat Harbour to be made tudal," in terms of where it disposes of treated effluent.

Pictou Landing First Nation passed a motion directing Boat Harbour to return to tidal upon completion of the provincial government's remediation project. This is provincial jurisdiction and is entirely an issue/agreement between First Nations and government – Northern Pulp has no involvement in this aspect.

B.

MacDonald said if Northern Pulp is allowed to release treated effluent into the Northumberland Strait, the damage to the environment and the industries that rely on it will be "a living nightmare."

Northern Pulp has been releasing treated effluent into the Northumberland Strait for five decades. Since assuming the lease and operation of the effluent treatment facility in the mid 1990s, effluent has met, often exceeding, all pulp and paper effluent regulations. Treated effluent that will be discharged under the proposed new design will see an even greater improvement. For a local municipal official to use terminology of "living nightmare" regarding a project of which he/she has no direct information about is highly detrimental to a very significant

Northern Pulp Nova Scotia Corporation, a Paper Excellence Company P.O. Box 549, Station Main, New Glasgow, NS B2H 5E8 260 Granton Abercrombie Branch Road, Abercrombie, NS B2H 5C5 T: 902.752.8461 | F: 902.752.9149 | info@northernpulp.com www.northernpulp.com | www.paperexcellence.com project for this region. A project that ultimately determines the continued existence of a major local industrial employer.

C.

MecDonald said, "I haven't seen the government's plan, but my point is, you can't wait until the plan is in place to speak up," suggesting that it would be a good idea to speak up, and say "we don't support making these things tidal, and running two huge industries in this province."

The proposed design for Northern Pulp's effluent treatment facility replacement is now commencing with public consultation. The exact purpose of this phase is to obtain concerns and ultimately address them (in the next phase anticipated for February/March 2018). No "plan" is in place and in fact this is the time for local officials, residents and business to fully enlighten themselves of the project and pose their comments, questions and concerns.

I believe each of you have now received an invitation to attend the consultation sessions to be held December 5 & 6 in which the project design and science used to inform that design will be presented. If you have not, please do let me know and I will be happy to provide you with the details of government and public sessions. On behalf of all Northern Pulp management and employees I respectfully ask that you take the time next week to attend and fully learn about this project.

Director of Corporate Communications Paper Excellence Canada

(1) General Manager, Northern Pulp (1) Fechnical Manager, Northern Pulp

> Northern Pulp Nova Scotia Corporation, a Paper Excellence Company P.O. Box 549, Station Main, New Glasgow, NS B2H 5E8 260 Granton Abercrombie Branch Road, Abercrombie, NS B2H 5C6 T: 902.752.8461 | F: 902.752.9149 | info@northernpulp.com www.northernpulp.com | www.paperexcellence.com

1105

From: 20(1) Porter, Gary S; Loney, Brett: Taylor, Brian K Subject: PW: Closed loop option November 24, 2017 2:30:37 PM Date: Attachments: image001.png Importance: High

Fyi - 20(1) from Pictou advocate email below. Likely will be a piece next Wednesday I'd conclude from his question

Excellence... It is in our name, our vision, and our values

Since its insugural year in 2010, Paper Excellence Canada (PEC) has evolved from a new entrant as an exporter to a leader in Canada's value-added natural resources (pulp) industry. Achieving takes in excess of \$1 billion through its even Canadain mills, PEC has accompliabled this level of takes rolume through involution and bed practices in a larmas with error to some vector through involution and bed practices in a larmas with a convertent to deliver premium quality products to all outtomers. Drough its Richmond-based head-quarters which hosts are employee base of 100 supporting over 2300 employ-ees in Canada and Europe, PEC continues to lead by example operating sh economic and environ ntally sustainable best practices.

Importance: High

To:

The technical description as to why a closed loop system is not an option presented by expert 20(1) is entirely accurate. I can add that the mill recently referred to in Samoa, CA, had a different bleach plant configuration that made this process possible and, despite this, the mill could not operate in a closed loop configuration for more than 7 days, when operating and equipment integrity issues needed to be addressed. The mill is now closed (Since 2009).

There has been calls as well that Northern Pulp could be/should be retrofitted to implement a closed loop system, as is currently the case in PEC's Meadow Lake Mechanical Pulp Mill. The pulping process at Meadow Lake is mechanical pulping, where fibres are mechanically separated (with high electricity costs) using from the wood chips, rather than chemically separated (cooking) as is the case for Northern Pulp. Products made from the type of pulp manufactured at Meadow Lake are used in products such as newsprint, magazine and catalog papers and other similar enduses, which are ENTIRELY different markets than those Northern Pulp services with its bleached kraft pulp. Northern Pulp's NBSK Kraft pulp is considered a premium pulp for the customers we serve and the products they then manufacture.

Ultimately there must be an effluent treatment facility which includes an outfall discharge for the type of process Northern Pulp operates. Effluent of today is not the same as decades ago – significant improvements have been made over the years. Treated effluent has been discharged into the Northumberland Strait for 50 years; it is important to recognize that current effluent discharge into the region has not impacted fishing activities nor will it in the future.

Hope this helps; if not let me know. As always, you may attribute to 20(1) Director of Communications, Paper Excellence.

From: 20(1)		@pictouadvocate.com
Sent: November	r-24-17 1:59 PM	
To: 20(1)	20(1)	@northernpulp.com>
	A	

Subject: Closed loop option

Hey 20(1). You may have read the News article about how closed loop is not an option for Northern Pulp's replacement effluent treatment system. Can you comment about those conclusions drawn principally by the consultant 20(1) They would be similar to those in your recent letter to the editor but I thought it would be good to update them given the context 20(1) has provided. Thanks.

8			
20(1)	Reporter Pictou Advocate		

Advocate Media Inc | 21 George St | Pictou, Nova Scotia B0K 1H0 Phone Cell

@pictouadvocate.com

This E-mail message (including attachments, if any) is intended for the use of the individual or entity to which it is addressed and may contain information that is privileged, proprietary, confidential and exempt from disclosure.

If you are not the intended recipient, you are notified that any dissemination, distribution or copying of this communication is strictly prohibited. If you

have received this communication in error, please notify the sender and erase this E-mail message immediately. Le présent message électronique (y compris les pièces qui y sont annexées, le cas échéant) s'adresse au destinataire indiqué et peut contenir des renseignements de caractère privé ou confidentiel.

Si vous n'êtes pas le destinataire de ce document, nous vous signalons qu'il est strictement interdit de le diffuser, de le distribuer ou de le reproduire. Si ce message vous a été transmis par erreur, veuillez en informer l'expéditeur et le supprimer immédiatement.

From:	20(1)			
To:	20(1)			
Cc:	20(1) dilon.ca: Porter, Gary S; 20(1)	20(1)	20(1)	
Subject:	Re: Media Inquiry			_
Date:	November 17, 2017 12:45:51 PM			

Article is up from CBC

http://www.cbc.ca/news/canada/prince-edward-island/pei-peifa-wastewatertreatment-plant-1.4406788

H	Dillon Consulting Limited 137 Chain Lake Drive Suite 100 Halifax, Nova Scotia, B35 183 T - 80KU F - 902,450,2008
	M - 902.240.7311 20(1)////////////////////////////////////
100000000000000000000000000000000000000	www.dilion.ca.

Please consider the environment before printing this email

On Wed, Nov 15, 2017 at 7:03 PM, 20(1) wrote:

20(1)@northernpulp.com>

FYI. Late afternoon media inquiry from CBC PEI. Original questions plus reporters follow up below. 20(1)

20(1) Communications Director Paper Excellence Northern Pulp Nova Scotia Corporation (cell) 260 Granton Abercrombie Branch Rd Abercrombie, NS B2H 5C7

Begin forwarded message:

From: "20(1) paperexcellence.com" <20(1) paperexcellence.com> Date: November 15, 2017 at 3:59:38 PM AST To: 20(1) @CBC.CA" @CBC.CA> 20(1)Subject: Re: Media Inquiry

Hi 20(1) See updated responses to your additional questions below 20(1)

Thanks for getting back to me. I do have a few more questions.

1. Would the new facility fall under the current lease with the province?

The facility will be built on the mill site.

2. When would you expect a formal application to be made to the province for the plans?

Dillon Consulting has been hired to assist in the Environmental Assessment (EA) process. There is much work to be completed before the application can be filed. One of the first steps will be public consultations.

3. There are a lot of concerned fishermen that are worried about how this new treatment facility will affect the water in the Northumberland Strait. Are they right to be concerned?

Treated effluent has been flowing through Boat Harbour and into the Northumberland Strait for over 50 years. The new treatment facility and diffused outfall will reduce the impact on the Strait. For example, the new outfall is designed to meet the Canadian Council of Ministers of the Environment (CCME) guidelines for effluent discharges which stipulate that all effluent parameters of concern should meet background concentrations of the receiving water in less than 100 metres from the outfall.

4. If the plans are rejected by the province, what is the next step for the company?

We are working cooperatively with the Government of Nova Scotia to design a treatment facility that meets all environmental requirements.

On Wed, Nov 15, 2017 at 2:54 PM, <20(1) paperexcellence.com> wrote: Hello 20(1)

Thank you for your email. Please see below bulleted information answering your query. Please feel free to email me if you have further specific questions and deadline you are working with. I am in meetings for the remainder of the day but will be able to access email periodically.

You may attribute the response to 20(1) Director of Communications, Paper Excellence

Kindly 20(1)

-KSH Solutions Inc has recently completed preliminary engineering where all available technologies were reviewed. Activated Sludge Treatment (AST) was recommended as the best and most reliable process for treatment for the new facility to be located on existing mill property. -The proposed new treatment system will be a modern AST system that mills and other facilities (industrial, municipal, etcetera) throughout the world have in place.

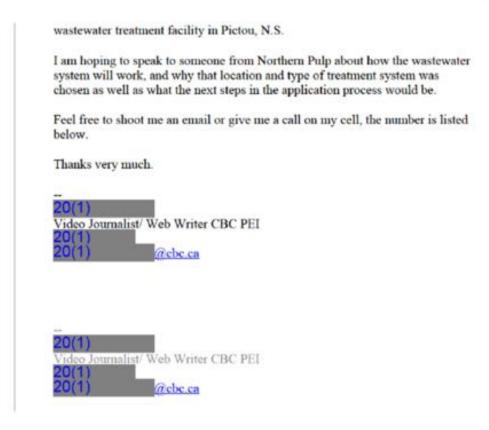
-The current effluent treatment system is an ASB system. In North American Kraft mills, there are predominantly two systems used to biologically treat industrial wastewater, the aerated stabilization basin (ASB or aerated lagoon) and the activated sludge system (AST). These two systems have far more similarities than differences. Both processes are based on the utilization of dissolved oxygen by microorganisms in converting organic and inorganic matter into a settleable form. The ASB process uses a large aerated lagoon and long retention times (days) whilst the AST process treats the wastewater in hours and involves two stages – an aeration stage and a clarification and recycle stage. AST systems generally operate at higher removal efficiencies as compared to ASB systems.

 In early October, Dillon Consulting of Halifax was contracted to provide professional guidance throughout the entire Environmental Assessment process, including creation of the Environmental Impact Assessment (EIA) project registration document.

 Presentation of all scientific information as well as documentation of public and stakeholder concerns, complete with how they will be addressed, are an important and vital part of the consultation process and EIA document.

-The effluent pipeline (outfall) will be designed with an engineered diffuser which is also an improvement from the current system.

-The new outfall is designed to meet the Canadian Council of Ministers of the Environment (CCME) guidelines for effluent discharges which stipulate that all effluent parameters of concern should meet background concentrations of the receiving water in less than 100 metres from the outfall.


 Construction would begin upon registration and approval of the project by Nova Scotia Environment.

From:

@CBC.CA]

Sent: Wednesday, November 15, 2017 1:50:37 PM To: Media Subject: Boat Harbour Plans Auto forwarded by a Rule

Good afternoon, I am working on a story about the proposed plans for the new

This message is directed in confidence solely to the person(s) named above and may contain privileged, confidential or private information which is not to be disclosed. If you are not the addressee or an authorized representative thereof, please contact the undersigned and then destroy this message.

Ce message est destiné uniquement aux personnes indiquées dans l'entête et peut contenir une information privilégiée, confidentielle ou privée et ne pouvant être divulguée. Si vous n'êtes pas le destinataire de ce message ou une personne autorisée à le recevoir, veuillez communiquer avec le soussigné et ensuite détruire ce message.

From:	20(1)		
To:	20(1)		
Ces	20(1) Porter, Gary St 20(1)	20(1)	
Subjecti	Re: Print out of Website		
Date:	November 26, 2017 7:45:24 PM		

Hi 20(1)

Thanks for the comments. Made that revision on the About page. We'll work on that figure for addition tomorrow.

Your comments for O2 delig etc are already on the website -I'm sorry I didn't catch that my support staff who prepped the pdf didn't refresh the publication view on the website when he printed the copy: which is also why 20(1) couldn't see the info about the outfall pipe.

I'll circulate draft figures tomorrow as we have them.

Please consider the environment before printing this email

Let's work Monday to get some additional content about the existing performance and the proposed system: We can add this and identify it on the home page under "updates/News" to highlight it. We will be looking at building that visual we discussed of 'XX parameter meeting background within X m of the outfall"

Happy to confirm the last IT domain updates are done and as we complete one last check of links and files we are on track to be "Live" tomorrow.

8	Dillon Consulting Limited 137 Chan Lake Drive Suite 100 Haritax, Nova Socia, B35 183 T - 20113 F - 902 450 2008
	M - 902-240-2311 ddinn.ca www.diion.ca

1171

	PO Box 442, Halifax, Nova Scotla, Canada 83J 2P8 + www.novo	scona.cs/nse
AN 1 0 2018		Our File number: 10700-40-52616
	(797)	

This letter is in response to your email dated December 1, 2017, regarding the new effluent treatment facility planned for the Northern Pulp mill. Premier McNeil has asked me to respond on his behalf, in my capacity as Minister of Environment. I appreciate you taking the time to share your concerns.

I am sure you are aware that effluent from the pulp mill has been treated by the Boat Harbour effluent treatment facility and then discharged into the Northumberland Strait for the last 50 years. Another treatment option is needed to ensure that the Boat Harbour facility will close by 2020.

Once this project is registered for environmental assessment (EA) with the Department of Environment, it will be examined by several provincial and federal government experts, including Fisheries and Oceans Canada. More information about the EA process can be found at https://novascotia.ca/nse/ea/docs/EA.RegistrationTimeFrames.pdf.

Public input is a key component in decision making. Once Northern Pulp has submitted its application for an EA, there will be a 30 day period for public input and I encourage you and anyone who is interested to make your voices heard. This input will be considered when decisions are made. You can sign up to be notified of the 30 day public comment period at https://novascotia.ca/nse/ea/joinlist.asp.

If you have further question about the EA process, please feel free to contact Helen MacPhail in our Halifax EA Branch at (902) 483-2696.

Sincerely,

and

lain Rankin, MLA Minister of Environment

c: Premier Stephen McNeil Helen MacPhail

Hi All - I am pairing these down to a story board, so don't put any time into these yet.

Excellence... It is in our name, our vision, and our values

Since its insegural year in 2010, Paper Excellence Canada (PEC) has evolved from a new entrant as ne experter to a leader in Canada's value-added natural resources (pub) indexity. Achieving sales in excess of \$1 billion through th saven Canadian mile, PEC has accomplished this level of sales volume through innovation and best practices in all areas with a commitment to deliver permism quality products to all customers. Through its Richmond-based headquarters which hosts an employee base of 100 supporting over 2300 employees in Canada and Europe, PEC continues to lead by example operating through economic and environmentally sustainable best practices.

Cc: 176461 <176461@dillon.ca>

Subject: RE: Mill proposed slides - story we need to tell (updated with people in charge of slide preparation

Hi 20(1)

Here's what I was able to put together, based on the comments in your e-mail. It's all under the same file (the zero-effluent file I sent yesterday), which is dated today and is in PowerPoint format (easier to extract)

I included some additional info that could be useful to others as well.

Let me know if you need anything else

20(1) Conseiller Principal, Procédés et Environnement / Principal Consultant, Process and Environment

KSH Consulting

1 Place Alexis Nihon 3400 de Maisonneuve O., bureau 1600 Montréal (Québec) Canada H3Z 388 T 20(1) F 514.939.5266

KSH

www.ksh.ca

From: 20(1)	[mailto:20(1)	northernpulp.com	1		
Sent: Novembe	er 30, 2017 8:53 AM				
To: 20(1)	20(1)	20(1)	20(1)	20(1)	
20(1)	Gary Porter; 20(1)	20(1)	20(1)	20(1)	20(1)
	out i torter, and				

Cc: 176461

Subject: Mill proposed slides - story we need to tell (updated with people in charge of slide preparation

Hi - please see additional notes below.

Excellence... It is in our name, our vision, and our values

Since its insugural year in 2010, Paper Excellence Canada (PEC) has evolved from a new entrant as an exporter to a leader in Canada's value-added natural resources (pub) industry. Achieving sales in excess of 51 billion through its averen Canada's nulls, PEC has accompliated this level of takes volume through innovation and best practices in all areas with a commitment to deliver premium quality products to all customers. Through its Richmond-based bead quarters which thosts an employee base of 100 supporting over 2200 employees in Canada and Europe, PEC continues to lead by example operating through economic and environmentally sustainable best practices.

From: 20(1)				
Sent: Wednesday,	November 29, 20	017 8:34 PM		
To: 20(1)	<20(1)	dillon.ca>; 20(1)		0(1) dillon.ca>; 20(1)
<20(1)	_	20(1)	<20(1)	dillon.ca>; 20(1)
20(1)	northernpulp.com	n>; 20(1)	<20(1)	northernpulp.com>:
Gary Porter <gary.< td=""><td>s.porter@novasc</td><td>otia.ca>; 20(1)</td><td><20(1)</td><td>raycon.ca>; 20(1)</td></gary.<>	s.porter@novasc	otia.ca>; 20(1)	<20(1)	raycon.ca>; 20(1)

<20(1) dillon.ca>; 20(1) <20(1) dillon.ca>; 20(1) <20(1) @dillon.ca>

1039

Cc: 176461 <176461@dillon.ca> Subject: Mill proposed slides - story we need to tell

This is the story I think we need to tell:

Simplified description of EA process - Class I and II (show timeline schematic on handouts that ends in June/July 2018, make a second schematic that starts at Registration and ends at decision and show steps or milestones, point out that other agencies involved (DNR, DFO, trans, ECCC) not just NSE. (Dillon)

What is effluent? Why treat it? What is in it? (20(1)

Map of existing ETC – point out pipeline, current process equipment and dam and outfall to Pictou Road (Dillon)

Water supply to the mill - aerial picture (attached) - will explain 3 rivers running to harbour, Michelin and NPNS water supply, unused water spills over dam, RV Anderson report on sustainability (incredible # of people worried we are going to dilute the Strait with fresh water - they need to know it goes there anyway) - (Dillon to identify 3 rivers, dam, pumping station, causeway underflow, Michelin, NPNS and existing and new outfall on the map) (mill- sample bottle and talking points) Sample bottle of color, doesn't meet CCME drinking water standards.

Options considered - how did we pick AST? BAETA methodology. Why not zero effluent, table (summary) of North American systems - who has ASB, AST and marine or FW discharges? no mills in NA running anything else. Speak to Europe and asia. Closed loop build up of chloride in our boilers, corrosion control - cathodic protection on your boats. (**** to provide)

In mill changes to support ETF - O2 delig and cooling tower slide (and picture of CT) - run seasonally only to reduce summer cooling water flow, RWS did not consider O2 delig improved quality, not sure of start-up and commissioning times, ETC more conservatively designed for extra aeration. Cooling towers use more fresh water due to evaporation. Water and effluent flows not equal. (201) moved after why we picked AST, improvement to support new AST)

New system – 3 pics - block diagram (20(1) aerial layout and pipeline aerial layout (Dillon 2) aerials) - point out that old pipeline was untreated and new pipeline is after treatment.

Differences between AST and ASB - why better process, more modern, confidence in best system. 20(1)

RWS - 30 day lunar cycle July 2016 - most challenging month for river inflow (conservative case) show map of study area from stantec report. High effluent loading for 30 days straight with no biological degredation. (Dillon)

Why outfall selected where it was? Locations considered in RWS - both inside and outside harbour

Inside harbour could lead to build up of nutrients (nitrogen and phosphorous) – eutrophication. Had to be far enough from entrance to BH to ensure no eutrophication there either. (Dillon)

Design of line – marine geotech, ROV to confirm path not impacting sensitive habitat or marine protected areas. Picture or sample of HDPE pipeline for thickness. Rock mattress, diameter of line, 1 m estimated armour stone cover, create habitat. Why we show a corridor, not a line. Questions about top of line being hazard to navigation – someone said 9 ft minimum at entrance to harbour at low tide – check. Show we are OK? (Dillon)

Design of the diffuser – pictures of diffuser (schematic and photograph - attached), (Dillon) 6 ports chosen – modelled 1, 3 and 6 Meet guidelines for CCME – table of parameters and distances (include 20(1) note on salinity)

Aerial showing mixing zone stantec sensitivity maps considered – show?

History of Effluent Quality – time/project/impact/effluent sample bottles. Last line will be predictions for the project (NPNS to provide mark up, Dillon to draw up) including 1992 and 1997 changes. Possibly by increments of decades. How do we explain difference between in and out of BH? ASB data from 2009 to present is into BH, data before 2009 is <u>out of</u> BH. Some say effluent quality will be worse than today because of all the polishing that is happening across the BH basin – and they are correct to some extent.

Summary of EEMs – chart of year/study/result (not sure if this is a good idea or not?) 20(1)

Effluent temperature – hotter than now (BH big basin provides a lot of natural cooling today). Give temperatures and explain CCME meeting 1C guideline (0.2 or 0.3 in 100 m this is in July when ocean the warmest. 3 dimensional plume. Mixing zone above the benthic layer. Add Table from Stantec report showing 0.2 C increase. (Dillon)

Solids – concern about large amount of solids (greater than 1000 kg/d). GUY – what percentage of solids is organic or bug bodies? Compare future to current – speak of high solids in history (especially pre 1990s). One of lower mills in Canada. Concern over build-up of bottom sludge and scallop fishing. 20(1) – will we speak to odour m??

Metals/Dioxans and Furans – don't know what to do with this. How to handle questions around burning of sludge that all other mills do? Are municipal ETC's burning sludge? (Dillon) metals from wood – also burned in wood stoves.

List EA studies completed, ongoing and planned. (Dillon)

Like the "anticipated change chart" in LaFarge Cement EA also Irving EA – could we make same? Include positive and negative and things that stay the same – odour, sludge burn vs landfill, color and organic improvements, solids about same, rock cover, energy reduction, less CO2 emissions, economic, etc. – work on this together on Friday

Four studies to share: Timeframe?

- 1. RV Anderson Middle River Sustainability
- 2. KSH Phase I
- 3. KSH Phase II ??
- 4. Stantec RWS

To add to frequently asked questions:

Is dilution the solution to pollution for Northern Pulp? Industry standard limits as well as current PPER limits are mass-based (ex. kg/day) and not based on volume. Therefore adding more fresh water to the effluent does not make effluent limits easier to meet. The RWS was conducted at design flow. Reducing effluent flow results in an improvement in meeting CCME guidelines compare to the higher design flow. Therefore, there is no benefit to adding dilution to the effluent.

Excellence... It is in our name, our vision, and our values

Since its inaugural year in 2010, Paper Excellence Canada (PEC) has evolved from a new entrant as an exporter to a leader in Canada's value-added natural resources (pub) inflastry. Achieving sales in excess of \$1 billion through its seven Canadan mills, PEC has accompliated this level of sales volume through innovation and best practices in all anais with a commitment to detive premum quality products to all customers. Through its fictmend-based headquarters which hosts are employee beau of 100 supporting over 2300 employees in Canada and Europe, PEC continues to lead by enample concentrating through reconcers and environmentally sustainable best practices. 1041

From:	20(1)	
To:	20(1) 20(1) 20(1)	Porter, Gary S
Subject:	Open houses - ideas for story boards	
Date:	November 15, 2017 6:57:49 PM	
Attachments:	image002.png	

Hi All,

This is a combination of things that Mike and I have put together as things we should think about addressing through the EA process:

TV screens for 2-D videos. How to present at the meeting?

3 D story board – show effluent plume in relation the background mixing zone and point of outfall for major parameters

EEM summary

History of effluent – existing limits and data over the years (maybe production or maybe express in units/t)

History of effluent - Canso Chemicals, ECF bleaching

History of effluent – how BH came about, legal and historical timelines and possible etc upgrades over the years

Metals in effluent - recent facebook questions (NSE has a piece of this)

Water quality of middle river - not drinking water standards, has color is Michelin effluent. Spills over to harbour if not used.

Effluent parameters – difference from today. Jars made up for color (show historical) and possibly jars made up for TSS. – have several sets of jars made up

Cartoon diagram of AST system - dynamic model showing water going through it.

Aerial maps of areas.

Air emissions - difference in odour from existing (septic settling stage, etc), burning of sludge will have to be identified. Possibly get samples of sludge from Port Hawkesbury.

Possibly bring microscope.

History of kraft mills in North America - details of what their systems are.

Ask Domtar is we can use their pictures

Should we bring lobster taste test studies from the 90s?

Where are the moreturium areas for shellfish in the strait?

Background samples of water - GHD ??

No backflow into BH after return to tidal

Show layout - federal water vs provincial water

In mill processes - o2 delig & process water cooling towers (non-contact & water recycle)

Show that fresh water goes over dam and into strait whether or not it goes through the mill or not (out at lighthouse beach). Concern over big fresh water influx.

Michelin effluent is our influent

Fisherman talking about lobster larvae and 30 ft depth that they float and then sink.

Explain toxicity testing – usually means low oxygen & explain how test is done with fish (how to visualize)

Biologist question about adding heat to the strait – RWS less than 1 C (will be higher temp than today however)

Fisherman concerned about stirring up Mercury while we build near the Canso property

Goldboro experience - increase in lobster habitat

Fisherman worried about build up of bottom sludge - specific reference to scallop fishing

Biologist worried about low water circulation in the strait – bottom warming (explain large study area)

Fisherman worried about contamination in BH now and when opened up - mixing up the 2 projects

Worried about oxygen in the effluent - dead zone for fish

Why is new AST better than ASB?

Facebook reference to Paul Klopping Supreme Court appeal letter - odour issues with ASTs too

Bring piece of HDPE outfall pipe - comparison to fiberglass line current

Fisherman concern about difference between PHP and NPNS is that strait of canso is ice fee and Northumberland is not – will effluent get trapped and not flow? How does ice cover affect outfall?

20(1) to new eff	- right now mill has BH as large buffer zone, so effluent at point C is not comparable luent. Need to compare to Point D or speak to difference between current point C and D.
20(1)	- Why not closed loop system? Offering up a cheap solution, not a good solution
20(1)	has 2012 KSH study that says AST quality not significantly different than ASB
20(1)	- all toxic sludge will now be burned in the PB and end up as air emissions.

Excellence... It is in our name, our vision, and our values

Since its inaugural year in 2010, Paper Excellence Canada (PEC) has evolved form a new extrant as an exporter to a leader in Canada's value-added natural resources (pu/p) industry. Achieving sales in excess of \$1 billion through its server. Canadian mills, PEC has accomplished this level of sales volume through innovation and best practices in all areas with a commitment to deliver premium quality products to all customers. Through its Richmost-based headquarters which hosts an employee base of 100 supporting over 2300 employees in Canada and Europe, PEC continues to lead by example operating through economic and environmentally sustainable best practices.

Mandate

- KSH Consulting was requested to prepare a study benchmarking Canadian effluent discharge permits from chemical pulp mills in order to assess current industrial practices in terms of effluent treatment systems performance and how they compare to proposed new limits facing the Northern Pulp Nova Scotia (NPNS) facility in New Glasgow.
- The study is required by NPNS for their discussions with government authorities (Nova Scotia Environment) to ascertain if proposed new effluent permits for the mill are comparable and achievable given the age of the mill, technologies employed and the nature of the effluent treatment facilities at NPNS.

Background

- 3. The Kraft mill located on Abercrombie Point, in the town of New Glasgow NS, has been in operation since 1967. The mill produces bleached (ECF) Kraft market pulp at a current rate of -300,000 ADt/a. At the time of construction, the Government of Nova Scotia agreed to build and operate a treatment system for the mill's process effluent, which was constructed in the western portion of an area known as Boat Harbour. The system was refurbished in 1996, at which time the mill took over operation of the system. The effluent treatment system consists of constructed sedimentation basins followed by aeration in a natural basin with baffle curtains directing flow. A large, natural final polishing/stabilization basin follows prior to release to the Northumberland Straight.
- 4. While the system has met federal and provincial standards since 1996, there has been pressure to return some of the natural waterways to their original state and increasingly stringent environmental regulations are being proposed that may require modifications to the system or the effluent streams that feed it to continue operating in the years to come.

- TSS limits (along with BOD₅) are the longest established pulp and paper emission regulations on the books. From early on, even before organic load mitigation, mills would collect solids coming from their process that were found to be overloading local waterways. Mitigation has ranged from settling ponds to raked clarifiers.
- As mills have evolved, more and more fibre (the main solid waste) has been retained in the process and sold as product instead of being lost to effluent. This has resulted in a steady reduction in TSS losses.
- NPNS's proposed TSS daily limit of 4,100 kg/d and monthly limit of 2,460 kg/d equates to approximately 5 and 3 kg/tADt of production respectively, based on 800 ADt/d.
- 4. As can be seen in the following charts, this would place NPNS as the one of the most tightly restricted emitters of the mills compared for both the daily and monthly limits.
- NPNS has been able to maintain levels just below this new limit performing at annual average levels of 3.26, 2.61 and 2.05 kg/ADt at Point C for 2011, 2012, and 2013 respectively. In fact, a marked downward trend can be seen.
- 6. Continued TSS compliance is in fact more difficult for NPNS since there is no final clarifier and lagoons can be prone to rising solids and upsets. Point C of the effluent treatment system also benefits from the settling effect of Boat Harbour prior to Point D, so the impact on marine environments is even less pronounced.
- Historic data over the past two years has shown 10-15% better performance for TSS losses in the summer. This may be due in part to less solids degradation in the ASB in the winter when temperatures are lower. Seasonal differences in performance (winter to summer) are similar to those reported in the BOD section for NPNS.

Environment Environnement

14/06/17

Northern Pulp Nova Scotia Corporation PO Box 594, Station Main New Glasgow, NS B2H 5E8

Attn: 20(1) General Manager

Distant R	
Dear	

RE: Minimum Requirements of a Receiving Water Study

Further to our meeting on June 7, 2017, at your request, the Department offers the following general guidance with respect to the terms of reference for receiving water studies and how they are used to establish end of pipe effluent discharge criteria:

A mixing zone is defined as an area of water contiguous to a point source discharge. A mixing zone is, under no circumstances, to be used as an alternative to reasonable and practical treatment. It must be designed to be as small as possible and it is only one factor to be considered in establishing effluent requirements.

The concept of mixing zones recognizes that the release of the aqueous component of adequatelytreated municipal or industrial wastes to watercourses or water resources does occur. As a general principle, the use of mixing zones should be minimized and limited to conventional pollutants. The mixing zone principle does not apply to hazardous wastes or dangerous goods. Mixing zones also do not apply to bio-accumulative or persistence substances and despite the allowance of a mixing zone, effluent shall not be acutely toxic. It should be noted that in this particular case, a receiving water study must address all potential substances of concern not limited to those outlined in the Federal Pulp & Paper Effluent Regulations.

Conditions within a mixing zone must not result in irreversible environmental damage, risk to ecosystem integrity or risk to human health. Mixing zones cannot interfere with other water uses such as drinking water supply, active fisheries or recreation.

As effluent loading requirements are based on careful design, so too should mixing zones be carefully planned on a site-specific basis including consideration of water quality, seasonal streamflow and current patterns, physical factors, biotic communities and spawning areas in and adjacent to the mixing zone, nearby water uses such as public or private beaches and drinking water intakes as well as other wastewater discharges. This information should be provided to the Department. As general guidance in the design of mixing zones, the following range of concerns should be adequately addressed:

- In order to protect important aquatic communities (fish, invertebrates and plants) in the vicinity of mixing zones, no conditions within the mixing zone will be permitted which:
 - a. are acutely lethal to aquatic life;
 - b. cause irreversible responses which could result in detrimental post-exposure effects;
 - c. result in bioconcentration of toxic materials which are harmful to the organism or its consumer;
 - d. attract organisms to the mixing zones, resulting in a prolonged exposure;
 - e. create a barrier to the migration of fish or other aquatic life.
- To ensure the protection of acceptable aesthetic conditions, mixing zones should not contain:
 - a. materials which form objectionable deposits (e.g. scums, oil or floating debris);
 - b. substances producing objectionable colour, odour, taste or turbidity;
 - substances which produce or contribute to the production of objectionable growths of nuisance plants and animals;
 - d. substances that render the mixing zone aesthetically unacceptable.
- Mixing zones should not impinge upon existing municipal and other water supply intakes, public or private beaches or important fish spawning and/or fishing areas. Conversely, new intakes or aquatic recreation areas should not be constructed within the boundaries of existing mixing zones.
- 4. Mixing zones may overlap unless the combined effects exceed acceptable conditions.
- When background water quality conditions at a proposed mixing zone site are degraded, effluent discharge requirements established must ensure, at the very least, that background water quality is not further degraded.

The Department requires enough information to ensure each of the above concerns is adequately addressed. Specifically including but not limited to:

- information about the effluent (substances of potential concern, volumes, etc.);
- information about the receiving water (physical characteristics, size, upstream and downstream water quality);
- the location of the receiving water in relation to the facility, the treatment system and the outfall (including a drawing or plan); and
- location of any nearby receptors

With respect to derivation of effluent limits, effluent requirements can be established based on treatment-technology, receiving water concerns, aquatic habitat concerns as well as community concerns including recreational uses. An important factor in the assessment is the use of the principles of assimilative capacity and mixing zone, but it is not the only factor.

The information provided to the Department should include one year's worth of effluent characterization data. For contaminants which are not considered to be designated hazardous contaminants, every watercourse/water resource has a definable assimilative capacity. Once the assimilative capacity of the receiving water has been determined, end of pipe discharge criteria can be calculated. Water quality considerations take precedence when contaminant discharges exceed the assimilative capacity of the receiving waters, even if the discharged loadings are within the treatment technology based effluent requirements based on the guidelines, regulations or policies. Receiving-water based effluent requirements also take precedence when ambient levels of contaminants are above acceptable levels. Biological effluent requirements may also be specified.

All effluent discharges must not be acutely lethal.

CCME has a guidance document, Guidance on the Site-Specific Application of Water Quality Guidelines in Canada: Procedure for Deriving Numerical Water Quality Objectives, which you can reference which may be of assistance to you. It can be obtained at the following link: http://ceqg-reqe.ccme.ca/download/en/221.

Should you have any questions or concerns regarding this information, please do not hesitate to contact Paul Keats, District Manager at 902-863-7600.

Regards,

Kathleen Johnson, P.Eng. Engineering Specialist

cc: Sarah Jadot, P.Eng., Regional Engineer Paul Keats, District Manager Adrian Fuller, Executive Director Frances Martin, Deputy Minister Gulf Nova Scotia Fleet Planning Board 44 River John Rd. River John, NS , BOK 1NO Pictou Landing First Nation 6533 Pictou Landing Road Site 6 Box 55, RR#2 NS, BOK 1X0 PEI Fishermen's Association 420 University Avenue, Suite 102 Charlottetown, PE C1A 7Z5 Maritime Fishermen's Union 408 rue Main St. Shediac, NB, Canada, E4P 2G1

March 8th, 2019

Dear Hon. Minister Miller:

Please find below concerns expressed by the Gulf Nova Scotia Fleet Planning Board, the PEI Fishermen's Association, the Maritime Fishermen's Union and Pictou Landing First Nation. The four groups together represent approximately 3000 commercial fishing licenses including 215 communal commercial licenses held by 18 Aboriginal organizations

There are numerous commercially important species in the Northumberland Strait including but not limited to lobster, rock crab, Atlantic halibut, tuna, mackerel, herring and American eel. The Strait is considered somewhat of a closed system with a delicately balanced ecosystem based on a complex food web. The fishing associations are in a perfect position to examine Northern Pulp Nova Scotia's (NPNS) EA Registration Documents from the marine perspective because of their extensive knowledge of each species and their interaction with each other. This knowledge comes directly from harvester experience coupled with the organization's involvement in stock assessments, collaborative research with DFO, and numerous advisory groups.

Armed with this knowledge the fishing organizations are extremely concerned with the lack of solid evidence in NPNS's proposal that this effluent will not alter the ecosystem in the Northumberland Strait. An alteration of the ecosystem could be due to a change in water chemistry, sedimentation, or negative health effects on marine life.

The organizations feel strongly that this environmental assessment, submitted by Northern Pulp, is insufficient and it should have a more rigorous assessment. This needs to include field work and research from an ecosystem perspective with consideration given to the climate change currently being documented in the Gulf of St. Lawrence.

We are asking you to reject Northern Pulp's proposal as presented and require NPNS to file a thorough and rigorous Environmental Assessment Report.

It is important to point out that a request for a more rigorous federal assessment does not set a precedent for changes to other pulp mill treatment plants to go through a federal assessment. The current pulp and paper effluent regulations were developed in 1992 and are currently under review so this project is a unique case while regulations are being updated.

Background information:

The mean water flow in the Northumberland Strait is west to east and the residence time is weeks to months but this varies with seasons, storms, etc. (AMEC Earth & Environment 2007). There are also 2 gyres (figures 1 and 2) located at each end of the Northumberland Strait (Fisheries and Oceans Canada 2005) affecting the residence time. These gyres have the

capability to retain and redistribute particles, being larvae or toxins (AMEC Earth & Environment 2007). These are important to understand when considering different life stages of a species because it corresponds directly with larval drift and settlement.

It is noted in the American Lobster, *Homarus americanus*, stock status in the southern Gulf of St. Lawrence: LFA 23, 24, 25, 26a and 26b report (DFO 2013) that recent models show that the Northumberland Strait is basically a secluded system based on larval recruitment compared to the rest of the southern Gulf of St. Lawrence.

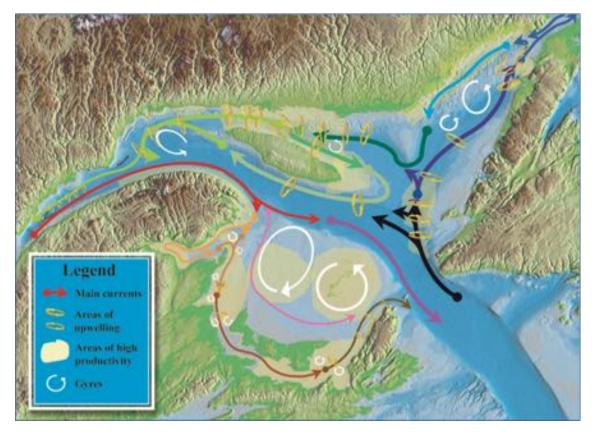


Figure 1: Currents, gyres, upwelling and areas of high productivity in the Gulf of St. Lawerence (DFO 2005).

Figure 2: Section of the map from figure 5 zoomed in on the Northumberland Strait.

To give this some context, we can look at lobster larval transport in the Gulf. Based on the previous description above one can assume that anything entering the Northumberland Strait will drift toward the east, up along the Western side of Cape Breton to the Cabot Strait, and out of the Gulf, but the description leaves out the timeline of this taking place. In 2010 Joël Chassé and Robert J. Miller published "Lobster larval transport in the Southern Gulf of St. Lawrence".

They broke down the Southern gulf to 25 larval source-sink areas (Figure 3) to look at the distribution between the time the eggs are released to the time the larvae settle. When the eggs are released they are reliant on the current for transport and only have the capability to swim to the bottom and seek out suitable habitat at stage 4 which occurs approximately 3-12 weeks after release from the abdomen. During the 3-12 weeks the prior to settlement the larvae's destination is a result of the direction of the current. Chassé and Miller (2010) showed that the larvae released in Pictou (area 21) actually seeds areas 23, 24, 22, 20, 18 and 19 (Figure 3). Seeding in areas 18 and 19 are to a lesser degree but still shows a distribution from east to west, exemplifying the weak current present in the Northumberland Strait. These models were run for the larval and post-larval season, June 1st to September 30th, over a 10year period. This shows lobster larvae are retained in the Northumberland Strait for up to 120 days while a product of the current and some actually end up west of where they were released rather than east; completely contradicting the description our harvester working group is being given by Northern Pulp and their consultants. This model showed that particular circumstances result in east to west currents lasting days to weeks (Hanson and Comeau 2017).

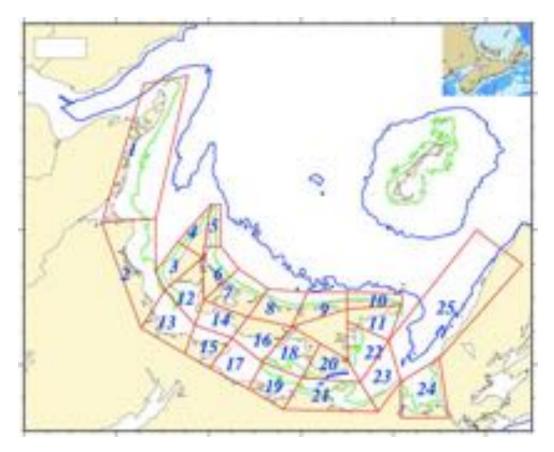


Figure 3: The 25 larval source-sink areas set up by Chassé and Miller, 2010 to analyze larval drift in the Southern Gulf of St. Lawrence.

This also shows the relationship that exists between the provinces in relation to the lobster fishery. Abundance in one area is not a product of the adults in the same area, but rather the adults in other areas and the currents that move the larvae through the Northumberland Strait and the Gulf of St. Lawrence.

Figure 4 showed a full year averaged currents in the Gulf of St. Lawrence and is represented by arrows, the darker and longer the arrows the stronger the current. It is apparent that the movement in the Northumberland Strait is greatly reduced compared to other areas within the Gulf of St. Lawrence further emphasizing the lack of circulation in the Northumberland Strait.

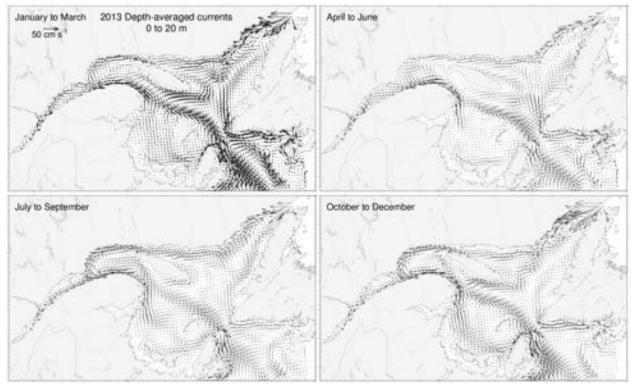


Figure 4: Depth-averaged currents from 0 to 20 m for each three-month period of 2013. (Galbraith et al. 2013)

The Gulf of St. Lawrence has been identified as an area of rapid coastal deoxygenation by Claret, M. et. al (2018). Their analysis shows increased surface water temperature, increased salinity and decreased oxygen saturation. Changes to any of these variables in isolation can cause stress on important commercial species, changes to all three has the potential for synergistic effects and should not be overlooked. The addition of hot, fresh water to the Northumberland Strait for an extended period should not be so easily passed by in this environmental assessment.

Specific Concerns from the Fishing Industry with Northern Pulp's EA Registration Document:

Issue 1: "The description of existing conditions for the harbour physical environment, water quality, and sediment quality in the Northumberland Strait, Caribou Harbour, and Pictou Harbour is based on the results of previous research and existing scientific literature and environmental assessments; no field work was conducted as part of this EA Registration." Pg. 337

Recommendation 1: A project of this magnitude warrants sufficient field work to be completed. The fact that there was NO field work adds to the gap in knowledge on this topic. Further studies should be carried out to confirm harbour physical environment, current water quality and sediment quality as a baseline for the future.

Issue 2: "Average sea surface temperature in May to December in the Northumberland Strait (1986-2012) are shown in table" (Pg. 338). The discussion around sea surface temperature draws attention to the changing ocean temperatures as a result of climate change. The Gulf of St. Lawrence has been identified as an area of rapid coastal deoxygenation by Claret, M. et. al (2018). Their analysis shows increased surface water temperature, increased salinity and decreased oxygen saturation. Changes to any of these variables in isolation can cause stress on important commercial species, changes to all three has the potential for synergistic effects and should not be overlooked. The addition of hot, fresh water to the Northumberland Strait for an extended period should not be so easily passed by in this environmental assessment.

Recommendation 2a: This data is not up to date but it is available. Care should have been taken to include up to date information. This represents a gap in scientific data.

Recommendation 2b: Fisheries in the Northumberland Strait take place throughout the entire water column. Surface, mid-water and bottom water therefore bottom water analysis is required. This is a gap in scientific data that is essential to understanding the changes that will take place going forward.

Issue 3: "This section provides an overview of water quality sampling in Pictou Harbour in 1990, 1995 and 1998 (Dalziel et al. 1993; JWEL 1996; ENSR 1999). Pictou Harbour was used as a proxy for Caribou Harbour with respect to water quality, in the absence of available water quality data for Caribou Harbour." (Pg. 343).

As laid out in the opening sections of this document, proper water quality is extremely important to every species inhabiting the Northumberland Strait. Parameters have shifted over the years due to numerous stressors on the ocean, the Northumberland Strait is not an exception to this change.

Recommendation 3: Relying on data that is 30 years old is unacceptable considering the simplicity of completing these tests. This project focuses on releasing effluent into a highly productive section of the marine environment and the care should have been taken to collect all appropriate data.

Issue 4: "The main commercial, recreational and aboriginal fisheries are for lobster, sea scallop, herring and rock crab among other lesser species fished" (Pg. 356). "Commercially important species with potential to occur in the Marine LAA include rock crab, lobster, sea scallop, herring, mackerel, and tuna" (Pg. 366).

Yes, these are some of the commercial, recreational and aboriginal fisheries that take place in the Northumberland Strait, but Northern Pulp failed to mention: mackerel, bluefin tuna, Atlantic halibut, soft shell crab, American eel, gaspereau, and silver sides.

In terms of those with potential to occur in the Marine LAA, any of these species listed have the potential to occur in the LAA, it is not restricted to rock crab, lobster, sea scallop, herring, mackerel and tuna.

A full and complete environmental assessment would take in to consideration every species fished commercially in the area to look at sensitivities of those fish to changes in water quality and negative health effects of contaminants. In this environmental assessment all species fished are not even listed, and none are researched to the extent they should be. A few examples of species missed and important information about them are below.

Atlantic Halibut are known to frequent the area and it seems that this is an area of interest during the summer/fall feeding period for them (personal communication with Dr. Arnault LeBris, 2019). Industry has played a large part in collecting data in collaboration with academia. Together we've pinpointed spawning areas through tagging studies and this is also how we know they are directly in the vicinity of the proposed pipe. This tagging study generated tracks or movements of each fish tagged. Figure 5 shows one halibut's approximate location in late June of 2015, which is directly overlapping the location of the outfall. Their normal temperature range in the summer and fall is 1°C and 15°C (Murphy, et al. 2017).

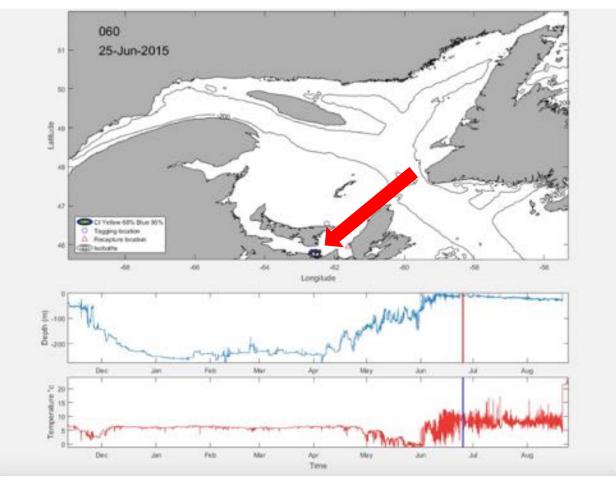


Figure 5: Location of a tagged Atlantic Halibut in late June 2015. (Arnault LeBris, Personal communication).

Recommendation 4: A complete list of species fished should have been composed with research on their tolerance ranges, sensitivities and how different contaminants in the effluent could negatively affect that species. Each species has a different mechanism for expelling toxins from their body so comparing one species to another does not work in the majority of cases.

Issue 5: Herring is caught along the shoreline of New Brunswick and Nova Scotia in the Northumberland Strait, including the Pictou area (Figure 8.12-6). There may be overlap with herring fishing and the location of the marine outfall. Concern has also been raised about the effects of the marine effluent pipeline on herring spawning as well as juvenile lobster (PEI Standing Committee on Agriculture and Fisheries 2018); however, the main fisheries in the LAA are for scallop and rock crab. Nevertheless, herring stocks are currently of concern to DFO, and attempts are being made to manage this fishery to avoid becoming at risk in the area (PEI Standing Committee on Agriculture and Fisheries 2018). Herring spawn between August and October in the southern Gulf of St. Lawrence and DFO has identified fall spawning grounds for herring in the eastern Northumberland Strait (DFO 2018) (Figure 8.12-7). (Pgs. 366-367)

This portion of the EA states that concern has been raised about the effects of the effluent on herring spawn, **however, the main fisheries in the LAA are for scallop and rock crab**. The DFO are making attempts to manage this fishery to rebuild the stock. There is NO mention of what Northern Pulp is doing

to mitigate the risk to herring spawn. Northern Pulp did not do any field or lab work on this possible interaction. This is another gap in data.

On February 20th and 21st, the Gulf small pelagic advisory met in Moncton. This advisory consists of DFO management and science, industry representatives and First Nation Communities. The advisory reviewed the current stock assessment, discussed landings and reviewed the draft of the rebuilding plan. In the management issues of the rebuilding plan the DFO state:

"Climate change and other human impacts on the ecosystem: the physical and biological shifts climate change brings, along with more direct human impacts ... are modifying marine ecosystems in many ways, which often cannot be effectively monitored and quantified. Since herring are spawning in shallow coastal areas, these populations may be impacted by these changes" (Figure 6).

This clearly shows concern from the DFO regarding possible issues involved in rebuilding this stock.

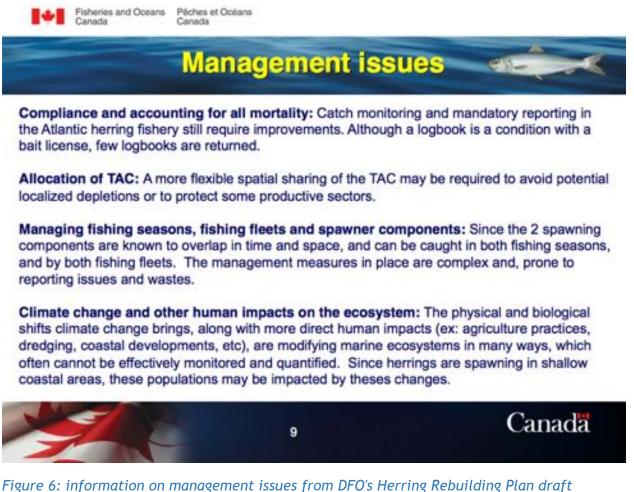


Figure 6: information on management issues from DFO's Herring Rebuilding Plan dr presented at the Small Pelagics Advisory meeting.

Recommendation 5: Proper research needs to be completed to understand possible sublethal effects of the effluent on herring spawn. Currently, the fall spawning stock is in the critical zone and the spring spawning stock is in the cautious zone (DFO, 2018) and a rebuilding plan is being developed to ensure the regrowth of the stock. The need for more research is obvious to assist in the rebuilding plan.

Issue 6: "Mackerel is also caught along the coast near the LAA, although most fishing occurs in the central and western portions of the Northumberland Strait (Figure 8.12-8)" (pg. 367).

This is the only comment about mackerel in the environmental assessment and it shows a lack of robust analysis. There is only a mention of fishing, no mention of life stages or their occurrence in the LAA. We know that the only spawning area in Canada is the Southern Gulf of St. Lawrence and that the egg survey has been slowly increasing since 2012 (DFO, 2017). We also know, based on those egg surveys that mackerel eggs are present in the East end of the Northumberland Strait (Figure 7).

Currently, this stock is in the critical zone but changes to management have allowed for a small increase in the last few years. For the past two years the DFO, industry and First Nations have been working together on a rebuilding plan.

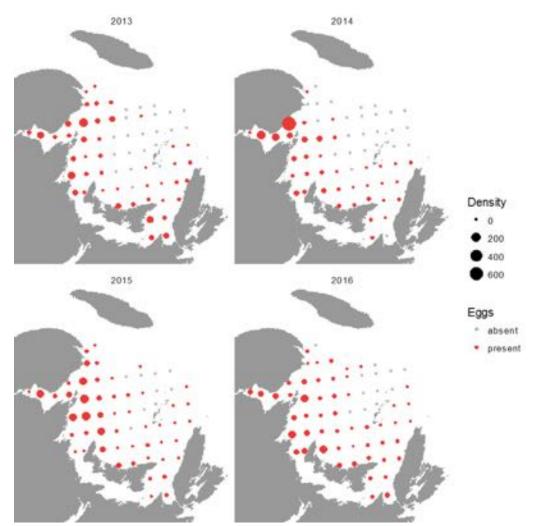


Figure 7:Distribution of mackerel egg (stages 1 and 5) densities (n/m2) measured in surveys in the southern Gulf of St. Lawrence from 2013 to 2016 (DFO, 2017)

Recommendation 6: Proper research needs to be completed to understand possible sublethal effects of the effluent on mackerel eggs. Currently, the stock is in the critical zone (DFO, 2017) and a rebuilding plan is being developed to ensure the regrowth of the stock. The need for more research is required to assist in the rebuilding plan and ensure all eco-system aspects are understood to give the stock biomass a chance to rebuild. This is clearly a gap in the environmental assessment data provided by Northern Pulp.

Issue 7: White Hake "This species was determined to have a high probability of being caught during DFO

research vessel trawl surveys in the eastern section of the Northumberland Strait, including the LAA (Rondeau et al. 2016)" (Pg. 381)

It is also noted on the same page, "The main reason for the decline of this species was overfishing in the late 1980s and early 1990s (COSEWIC 2013)."

This species may not currently be listed under SARA, but the DFO is currently undergoing consultation with the public regarding listing the Southern Gulf of St. Lawrence population under SARA as

endangered (Figure 8). Comment period ends on May 6th for this consultation. There is ample concern that is this species is listed and is known to be caught in the LAA what are the next steps?

White Hake stick to temperatures of 4°C to 10°C. The population normally migrates inshore in summer, and then to deeper waters during winter (DFO 2019).

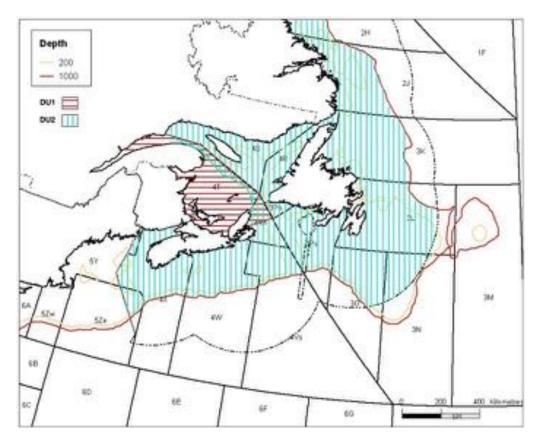


Figure 8: Differentiation between the two designated stocks of white hake, red horizontal lines show distribution of the Southern population (DFO. 2019)

Recommendation 7: The moment there is a SARA listed species in question in an environmental assessment it is supposed to trigger a federal assessment. The recommendation in this case is that Northern Pulp respect this process and request a federal assessment due to the fact that the federal government is currently seeking consultation on listing white hake as endangered under SARA. There is an enormous amount of time and energy spent on trying to rebuild stocks such as this one. Although Northern Pulp consultants laid the blame on the fisheries for the decline the truth is it was only a portion of the problem and fishing effort has nothing to do with the rebuilding struggles as DFO explains here:

"The main threat to White Hake in the sGSL is from an increase in natural mortality. Predation by Grey Seals is considered to be a major cause of this natural mortality. Over the past 3 generations (27 years), adult abundance declined by 91%. Levels of fishing removals that were sustainable in the 1970s and early 1980s became unsustainable when non-fishing mortality increased in the late 1980s. No directed fishing for White Hake has been allowed in the sGSL since 1995."

This species is naturally struggling to rebuild and no work was done to determine how the effluent will affect the already stressed species.

Issue 8: Atlantic Sturgeon - "Table 8.12-6: Marine Fish Species at Risk and Species of Conservation Concern with Potential to Occur in the LAA." This table lists American eel, American plaice, Atlantic bluefin tuna, Atlantic cod, Atlantic salmon, Lumpfish, Porbeagle, Spiny dogfish, Striped bass, and White hake but it does NOT list Atlantic Sturgeon.

There are 2 species of Atlantic Sturgeon in Canada and both are listed as threatened by COSEWIC. There was an Atlantic Sturgeon caught off Pictou Island in 2018 as bycatch (personal communication, fall 2018). It was returned healthy and swimming to the ocean.

Recommendation 8: This is another instance of a lack of comprehensive research done by Northern Pulp on a very lucrative and productive marine eco-system. More research required.

Issue 9: Potential Environmental Effect "Routine effluent discharge from the effluent outfall diffuser will cause a project-related change in water quality. The treated effluent will contain the following water quality parameters of concern: absorbable organic halides (AOX), total nitrogen (TN), total phosphorus (TP), colour, biochemical oxygen demand (BOD), total suspended solids (TSS), dissolved oxygen (DO), pH, and water temperature. Potential effects could result from:

- an increase in temperature, nutrients (nitrogen and phosphorus), and/or TSS;
- a change in colour, chemical and BOD, DO, and/or pH; and/or
- a reduction in salinity from the discharge of relatively freshwater effluent into the Northumberland Strait.

The discharge of effluent containing elevated levels of TSS could also cause a change in sediment quality near the diffuser due to settlement of suspended sediment," (Pg. 347)

This paragraph amplifies industry concern. As mentioned above, with the few species discussed, a change to any of these parameters can have detrimental effects on the fishery and this paragraph states in black and white that potential effects could result from any of them.

Increased TSS coincides with a change to the habitat and possible suffocation of benthic species.

Recommendation 9: Time should have been dedicated to understanding each species upper and lower limits for their environment as well as upper and lower limits for toxins specific to Pulp and Paper Effluent. The Pulp and Paper Effluent Regulations only monitor a few levels and are not stringent enough. This is based on the fact that Environment and Climate Change Canada are currently reviewing the regulations to make them more stringent and include other contaminants. A review and research should be done to understand how changing water quality coupled with toxins could affect each species inhabiting the area.

Issue 10: "Modelling results indicate that there are few traces of relatively high diluted effluent after a period of 30 days" (Pg. 350)

This is part of the accumulation the industry is concerned with. This plant is not going to run for 30 days and then stop this pipe will dump effluent into the Northumberland Strait 24 hours a day, 7 days a week potentially for years to come. Those few traces will add up overtime, remaining in the Northumberland Strait.

It is also key to remember that a model is a prediction, it is not exact. A scientific model is defined by Encyclopedia Britannica as: "the generation of a physical, conceptual, or mathematical representation of a real phenomenon that is difficult to observe directly. Scientific models are used to explain and predict the behaviour of real objects or systems and are used in a variety of scientific disciplines, ranging

from physics and chemistry to ecology and the Earth sciences. Although modeling is a central component of modern science, scientific models at best are approximations of the objects and systems that they represent—they are not exact replicas."

Recommendation 10: The industry is interested in a better understanding of the long-term effects of the effluent. As stated in the early pages of this report fishing has existed for hundreds of years and with healthy oceans the stocks will continue for hundreds more. More work should have been done to look at the effluent remaining in the Northumberland Strait for the long term. This would also take into account the changing climate (increasing temperature, salinity and decreasing oxygen saturation).

Issue 11: "A significant adverse residual environmental effect on marine fish and fish habitat is one where project related activities:

• Cause a significant decline in abundance or change in distribution of a marine fish population within the Northumberland Strait such that natural recruitment may not re-establish the population to its original level within one generation"

"No field work was conducted as part of this EA registration" (Pg. 358)

One generation means very different timelines for each species. This could be 2 years for a species like mackerel, 5-7 years for a species like lobster or 12 years for an Atlantic Bluefin tuna. In any case too much damage could be done to a population during that timeline to be acceptable to the industry. If there is damage to larval lobster and it is not understood or mitigated until it reaches size at maturity there will be 5-7 year classes following that initial one that will also be negatively impacted.

Recommendation 11: Again, this is a gap in the data. More research should have been done to better understand each species with a mitigation plan in place for each with a timeline based on their generation timelines.

Issue 12: "Figure 8.12-5 presents scallop catch weights from 2010-2014 in the Northumberland Strait where there is an overlap of the route of the pipeline and at the outfall location. Since 2014, a Scallop Buffer Zone in Scallop Fishing Area (SFA) 24, discussed further in Section 8.12.2.7, prevents scallop fishing in this area, except potentially at the location of the outfall" (Pg. 366).

The above paragraph is basically the only mention of sea scallops in Northern Pulp's environmental assessment. They are a species fished directly in and around the LAA, but only get the same attention as species apparently not fished in the area (according to Northern Pulp's consultants). Sea scallops will normally grow when they are between 8°C and 18°C, ideal temperature for growth is 13.5°C. Ideal salinity is between 30 to 32 ppt but they can tolerate salinities as low as 25 ppt. Sea scallops, although a bivalve are still an animal and are prone to being stressed in environments outside of their normal ranges, in this case they get stressed between 20°C and 23°C and mortality will occur at temperatures of 23.5°C and greater. The Southern Gulf of St. Lawrence has experience mass die offs in the past. (DFO, 2011)

Temperatures will not reach background levels until 100 m from the outfall site and the proposed effluent release will be 26°C in the winter and 37°C in the summer. This is much higher then mortality causing temperatures for the sea scallop.

Figure 9 shows locations of fishing effort in 2009. Although this effort is outdated fishing takes place on scallop beds so the concentrated effort would still be around the same areas as seen in 2009. The purpose of this map is to point out that a large portion of the fishery takes place in the vicinity of the proposed outfall location and therefore there are numerous sea scallop beds in the location susceptible to increased water temperatures.

For more information on collaborative research between the fishing organizations, the DFO and academia please see Appendix A.

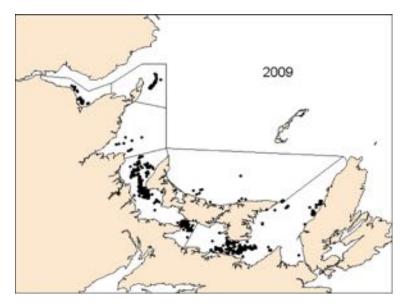


Figure 9:Map of fishing effort positions reported in the 2009 fish harvesters' logbook (DFO. 2011)

Recommendation 12: The information provided proves the susceptibility of sea scallops to temperature and that they inhabit the area near the proposed outfall location. This justifies the completion of detailed field work and trials in the area prior to the release of the proposed effluent to ensure there will be no negative effects on the sea scallops.

Issue 13: "NO field work was conducted as part of this EA registration for marine mammals, sea turtles and marine birds. In particular, this section relies substantially on the EIA registration for the PEI-NB Cable interconnection upgrade project" Pg. 395

Recommendation 13: A project of this magnitude warrants sufficient field work to be completed. The fact that there was NO field work adds to the gap in knowledge on this topic. Further studies should be carried out to confirm frequency of marine mammals in the area.

Issue 14: "NARW are not known to occur in the vicinity of the LAA and no historical observations of this SAR have been recorded in the Northumberland Strait, according to data obtained from DFO (2017) and OBIS (2018)." Pg. 400

"As noted in Sec? on 8.13.2.1, several North Atlan? c right whales were killed by vessel collisions and fishing gear entanglement in the Gulf of St. Lawrence (outside of the Northumberland Strait) during the

summer of 2017. However, this SAR is not known to occur in the Northumberland Strait and is therefore unlikely to be at increased risk of injury or mortality from vessel strikes or entanglement from the project." Pg. 420

Recommendation 14: If all documentation is reviewed it is clear that NARW have been reported in the Northumberland Strait in the past, most recently in 2015 when a female and her calf were spotted in St. George's Bay (Fig. 6).

There are currently strict management measures in place to prevent interactions between fishing and North Atlantic Right Whales. These management measures include flexibility outside of the designated dynamic zones. The management measures outside of the dynamic zone are on a case by case basis. A sighting of one whale may be handled different than a sighting of 3 whales together and different again for a sighting of a mom and calf.

Considering there is at least one reported sighting in the Northumberland Strait, it should be noted that there is an increased risk of injury or mortality from vessel strikes or entanglement from the project.

Figure 10: Sighting of North Atlantic Right Whale in the Northumberland Strait in 2015 along with calf (https://www.nefsc.noaa.gov/psb/surveys/MapperiframeWithText.html)

Issue 15: "A significant adverse residual environmental effect on the socio-economic environment is one where project-related activities directly interfere with the use of the land or water such that their intended use is no longer possible" (Pg. 431)

This is significance defined by Northern Pulp and/or it's consultants. The lobster fishing season lasts 2 months, a total of 61 days (minus Sundays as they do not fish on Sunday). This

leave a little over 50 fishing days. A loss of 5 or more of these fishing days is significant to the harvesters. This loss could be due to construction interference, negatively affected water quality driving the species off fishing grounds or sound from marine blasting driving the species away.

Recommendation 15: The definition of significant needs to be changed in this case (and others). What is defined as significant to Northern Pulp and/or their consultants is not an agreed level of significance to the harvesters in the area. If Norther Pulp would have completed proper consultation through this process the harvesters could have explained this.

Issue 16: "NPNS has attempted to engage commercial and PLFN fish harvesters to obtain fisheries data in the area of the marine outfall, but there was little interest from the fish harvesters to partcipate or provide any data (see Sec? on 6 Public, Regulatory and Indigenous Engagement)." (Pg. 366)

This comment is concerning to the Harvester working group because they did engage in discussion surrounding fishing grounds. It was made clear to Northern Pulp that if there was water there was fishing. Harvesters do maintain their tradition grounds, but they consistently explore other areas outside of their traditional areas. As biomasses evolve so do the traditional grounds they are found on. Lobster stocks are currently on the rise, so they are being found in areas they not have been found previously.

Recommendation 16: Each species cannot be pinpointed to specific locations within the Northumberland Strait. Again, they do have traditional habitat and areas they are commonly found, but individuals are not restricted to these areas only. The capability of each species to move throughout the Northumberland Strait must be considered and accounted for.

Issue 17: "While the majority of the commercial fishery for rock crab occurs in the central and western portions of the Northumberland Strait, there are areas in the eastern portion where rock crab is harvested, including Caribou Harbour where there is overlap with the proposed marine route of the effluent pipeline (Figure 8.12-3)." (Pg. 366)

Rock crab is another species of extreme importance in the Northumberland Strait, both for its commercial value, and it's position in the food chain. According to the DFO 2013 CSAS on *Homarus americanus* (American Lobster) which represents the most recent full CSAS, "Lobster is largely carnivorous and decapods were the principal prey (57% to 84% of prey biomass), with rock crab being the single most important component of the diet (45% to 78%). About 70% of the rock crab consumed by lobster represented fresh prey (muscle or gills attached) and the remainder consisted of old carapaces."

A decline in the rock crab biomass could also be detrimental to the lobster biomass

Recommendation 17: On numerous occasions in discussions with Northern Pulp the harvester working group recommended understanding the Northumberland Strait as an eco-system not on an individual species by species bases. This has not been accomplished in the environmental assessment submitted by Dillon Consulting on behalf of Northern Pulp.

Issue 18: "Lobster is caught throughout the central and eastern portions of the Northumberland Strait and there is overlap with the proposed route of the effluent pipeline and the location of the marine outfall (Figure 8.12-4)." (Pg. 366)

The Gulf of St. Lawrence (GSL) American lobster is the most valuable in the region, with 33,000 mt of lobster worth \$445 million landed in 2016 (DFO 2016), and abundance indices still increasing

throughout the Gulf (DFO 2016, DFO 2016, DFO 2016, DFO 2016). The value of American lobster is never mentioned throughout the environmental assessment submission. The fact that the biomass is increasing is mentioned, but the reasons for the increase are not mentioned. The harvesters in the Gulf region have been working for years toward voluntary management changes to help increase the biomass. These include but are not limited to increased carapace size, returning window females (all females within a certain size range) back to the water, escape mechanisms, returning berried females, etc. Below you will see a comparison between 2012 management measures (figure 11) and 2018 management measure (figure 12) to demonstrate the efforts harvesters make to ensure a sustainable fishery.

	23					- COL	a (LFA) and subarea 26A			38		
	23A	23B	23C	23D	24	25	26A1	26A2	26A3	North	South	
Fishing season	May 1 to June 30			May 1 to June 30	Aug. 13 to Oct. 14	May 1 to June 301			May 2 to June 30	May 1 to June 30		
Number of licences												
Category A Category B	636 33			635 1	708 6	703 5			223 3			
Number of traps per licence		3	00		300	250 (PEI 240)	280 (PEI 273)	275	250	250		
Number of traps per line	na	na	3 (po	artion)	na	na	6 (part of PEI) 5 Gulf NS	6	2	5	na	
Maximum size entrance (mm diameter)	152		na	152	na	152	na	152	na			
Minimum legal carapace size (mm)	75	75	72	71	71	71	71	73	76	81	79	
Female size restriction (mm) ²	115-129			115-129	>= 114	115-129			na			

Table 1. Key management measures in the lobster fishery in the southern Gulf of St. Lawrence that were in effect in 2012.

Figure 11: table take from the lobster stock assessment in 2013 reviewing the 2012 management measures (DFO 2013)

Major Lobster Management Measures in 2018 Mesures majeures de gestion en 2018

Lobster	Minimum carapace (mm)	Window	Maximum	Minimum number	Maximum hoop size (mm)	Escape mechanism / Mécanisme d'échappement		
Fishing Area		/maximum size females	number of traps	of traps per line*		Length between 127 mm and less than 254 mm	greater than 254 mm	
Zone de pêche de homard	Taille minimale de carapace (mm)	Fenètre / taille maximale femelle (mm)	Nombre maximal de casiers	Nombre minimal de casiers par ligne	Taille maximale du cerceau	Longueur entre 127 mm et moins de 254 mm		
23A	77	115-129	300	s/o / n/a	152			
23B	77	115-129	300	s/o / n/a	152	1		
23C	77	115-129	300	Portion de/of 23C 3 casiers / 3 traps	152	44 mm	43 mm	
23D	77	115-129	300	Portion de/of 23D 3 casiers / 3 traps	152			
241	73	115	300	6 traps per line	s/o n/a	42 mm	41 mm	
25	77	115	240- PEI / L-PE. 250- NB / NB. 225- NS / N.É.	s/o / n/a	152	44 mm	43 mm	
26A-1	73 74 (2020)	115-129	280 GNÉ. 272 ÎPE.	Portion de/of 26A1 (GNS/GNÈ.) : 5 casiers / 5 traps Portion de/of 26A1 (PEI/L-PÈ.) : 6 casiers / 6 traps	s/o / n/a	42 mm	41 mm	
26A-2	76	115-129	255 & 275	6 casiers / 6 traps	152	10000000000000000000000000000000000000	42 mm	
26A-3	76	115-129	250	2 casiers / 2 traps	s/o / n/a	43 mm		
26B south/sud	81.7 82.5 (2019)	s/o n/a	250	s/o / n/a	s/o / n/a		44 mm	
26B north/nord	82.5	s/o n/a	250	5 casiers / 5 traps	152	44 mm		

Figure 12: table of the 2018 management measures presented by DFO at the Southern Gulf Advisory meeting in Moncton in December 2018.

There is a high exploitation rate in the lobster fishery leaving the fishery dependent on strong larval recruits (DFO 2013). This is the reason the harvesters protect egg bearing females and it is also partially the reason for increasing the carapace size in some regions, larger females result in more eggs in the water and the guarantee every female will spawn at least once (rather than 50%) prior to being harvested.

It should also be noted that conditions like water temperature can impact the distribution of lobster and and their catches (DFO 2013). This is extremely important to the fishers in the area of the outfall considering the temperature being released will be well above the average for the given time of year (27 degrees Celsius in the winter and 36 degrees Celsius in the summer).

Recommendation 18: In Appendix R of Northern Pulp's environmental assessment it is recommended that more research be completed on the effect of the effluent on lobster in each life stage, although this was omitted from the executive summary written for the environmental assessment. Considering the effort harvesters contribute to understanding the eco-system they rely on and the changes the harvesters are implementing, voluntarily, to ensure they maintain a sustainable fishery in the future the same efforts should be made by Northern Pulp to ensure a sustainable fishery. At this point there has been no field trials, no lab test; absolutely zero work completed by Northern Pulp to prove to harvesters that they

will not be jeopardizing all the hard work going in to protect their lobster fishery. Considering lobster in the Gulf were worth \$445 million in 2016, this warrants real science to be completed, not just literature searches based on 40 year old research.

Issue 19: "Scallop Buffer Zones SFA 22 and 24 are part of a system of Scallop Buffer Zones in SFA 21, 22, and 24 that covers a total area of 5,835 km₂ (DFO 2017). Scallop Buffer Zones were established to protect juvenile American lobster as they are known to contain lobster nursery habitat (DFO 2017). Scallop Buffer Zone SFA 22 is in the western Northumberland Strait, approximately 85 km to the west of the marine PFA. Scallop Buffer Zone SFA 24 is in the eastern Northumberland Strait and the effluent pipeline will cross through the Scallop Buffer Zone SFA 24 close to shore (Figure 8.12-10) in Caribou Harbour near Jessies Cove. The location of the outfall is outside this buffer zone" (page 384).

Figure 13 was shared in section 8.12.2.7 of the NPNS's environmental assessment. This image is inaccurate. According to Variation Order GVO-2017-087 (DFO 2017), "A one (1) nautical mile buffer zone will be closed until further notice from the nearest point of land in the counties of Cumberland, Colchester, Pictou and Antigonish and one (1) nautical mile from the nearest point of land around Pictou Island, situated in the Northumberland Strait." The outfall location would be within the scallop buffer zone is the zone was shown in his entirety. These scallop buffer zones are considered marine refuges by DFO and count toward the Marine Protected Area goal of 10% protection of coastal waters in Canada by 2020.

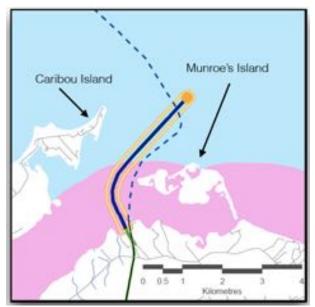


Figure 13: Outfall location and scallop buffer zone as shown, inaccurately, by Northern pulp in the Environmental Assessment

Recommendation 19: Ideally there would be no change or alteration to the scallop buffer zone. It is in place to protect juvenile lobster habitat and that protection zone should be honored.

Sincerely

Robert H. Jenkins Prince Edward Island Fishermen's Association, President

Carl Allen Maritime Fishermen's Union, President

Honnie Heighton

Honnie Heighton Gulf Nova Scotla Fleet Planning Board, President

ul Andrea /

Pictou anding First Nation, Chief

REFERENCES

AMEC Earth & Environment. 2007. Northumberland Strait Ecosystem Overview Report. Submitted to Fisheries and Oceans Canada Gulf fisheries Centre, Moncton, New Brunswick.

Chassé, J., Lambert, N., Comeau, M., Larouche, P., Galbraith, P., and Pettipas, R. 2013 Physical Environment Conditions in the southern Gulf of St. Lawrence. DFO, GFC-IML-BIO.

Chassé, J. and Miller, R.J. 2010. Lobster Larval Transport in the Southern Gulf of St. Lawrence. Fish. Oceanogr. 19:5, 319-338.

Claret, Mariona & Galbraith, Eric & Palter, Jaime & Bianchi, Daniele & Fennel, Katja & Gilbert, Denis & Dunne, J. (2018). Rapid coastal deoxygenation due to ocean circulation shift in the northwest Atlantic. Nature Climate Change. 8. 10.1038/s41558-018-0263-1.

DFO. 2005. The Gulf of St. Lawrence, A Unique Ecosystem. The Stage for the Gulf of St. Lawrence Integrated Management (GOSLIM). Oceans and Science Branch, Fisheries and Oceans Canada. Cat. No. FS 104-2/2005

DFO. 2011. Assessment of the scallop fishery (Placopecten magellanicus) of the southern gulf of St. Lawrence. DFO Can. Sci. Advis. Sec. Sci. Advis. Rep. 2011/039.

DFO. 2013. American lobster, *Homarus americanus*, stock status in the southern Gulf of St. Lawrence: LFA 23, 24, 25, 26a and 26b. DFO Can. Sci. Advis. Sec. Sci. Advis. Rep. 2013/029.

DFO 2016. 2016 Value of Atlantic Coast Commercial Landings, by Region (thousand dollars). http://www.dfo-mpo.gc.ca/stats/commercial/land-debarq/sea-maritimes/ s2016aveng. htm (Date modified: 2018-03-06)

DFO 2016. 2015 lobster stocks assessment in the Gaspé, Quebec area (LFAS 19, 20 and 21). Canadian Science Advisory Secretariat Science Advisory Report 2016/43.

DFO 2016. 2015 lobster stocks assessment on the North Shore (LFAS 15, 16 and 18) and at Anticosti Island (LFA 17), Quebec area. Canadian Science Advisory Secretariat Science Advisory Report 2016/44.

DFO 2016. 2015 lobster stock assessment in the Magdalen Islands (LFA 22), Quebec area. Canadian Science Advisory Secretariat Science Advisory Report 2016/45.

DFO 2016. Update of the stock status indicators for the American lobster (Homarus americanus)

stocks in the southern Gulf of St. Lawrence Canadian Science Advisory Secretariat Science Advisory Report 2016/51

DFO. 2017. Assessment of the Atlantic Mackerel Stock for the Northwest Atlantic (Subareas 3 and 4) in 2016. DFO Can. Sci. Advis. Sec. Sci. Advis. Rep. 2017/034.

DFO. 2018. Stock Assessment of Atlantic Halibut of the Gulf of St. Lawrence (4RST) in 2016. DFO Can. Sci. Advis. Sec. Sci. Advis. Rep. 2017/052.

DFO. 2018. Assessment of the southern Gulf of St. Lawrence (NAFO Div. 4T) spring and fall spawner components of Atlantic herring (*Clupea harengus*) with advice for the 2018 and 2019 fisheries. DFO Can. Sci. Advis. Sec. Sci. Advis. Rep. 2018/029.

DFO. 2019. Aquatic Species at Risk - White Hake. Southern Gulf of St. Lawrence population. https://wildlife-species.canada.ca/species-risk-registry/virtual_sara/files/public/ Cd%2DWhiteHake2pops%2Dv00%2D2019Feb%2DEng%2Epdf

Fisheries and Oceans Canada (DFO). 2005. The Gulf of St. Lawrence – A Unique Ecosystem. Gulf of St. Lawrence Integrated Management. Cat. No. FS 104-2.

Galbraith, P.S., Chassé, J., Gilbert, D., Larouche, P., Caverhill, C., Lefaivre, D., Brickman, D., Pettigrew, B., Devine, L., and Lafleur, C. 2014. Physical Oceanographic Conditions in the Gulf of St. Lawrence in 2013. DFO Can. Sci. Advis. Sec. Res. Doc. 2014/062. vi + 84 p.

Hannah M. Murphy, Jonathan A. D. Fisher, Arnault Le Bris, Mathieu Desgagnés, Martin Castonguay, Timothy Loher & Dominique Robert (2017) Characterization of Depth Distributions, Temperature Associations, and Seasonal Migrations of Atlantic Halibut in the Gulf of St. Lawrence using Pop-Up Satellite Archival Tags, Marine and Coastal Fisheries, 9:1, 1-356, DOI: <u>10.1080/19425120.2017.1327905</u>

Hanson, J.M. and Comeau, M. 2017. Progress on the Ecosystem Research Initiative for the Northumberland Strait since October 2012. Can. Manuscr. Rep. Fish. Aquat. Sci. 3145: ix + 29

Encyclopedia Britannica: Scientific Model - https://www.britannica.com/science/scientific-modeling.

APPENDIX A. Ongoing Research Efforts by Industry

This section is designed to show the effort being made by the industry associations to improve the health of the oceans and eco-systems. It is not enough to maintain the current status of the ocean. The majority of current harvesters come from a long line of harvesters and the outlook for the future of the industry remains the same. Soon, the children of current harvesters will take over gear with visions of their own children doing the same.

It is not enough to consider the effects of the effluent on the ocean environment in one month or one year. Fishing has been going on for hundreds of years and should continue for 100 more. To ensure this is possible industry groups now work directly with the Department of Fisheries and Oceans (DFO) to come up with new management plans, help DFO collected required data for stock assessments and various research and help develop rebuilding plans for stocks. Below are a few of the projects industry works on with DFO to improve the health of our oceans:

Halibut Longline survey - Collaborative research with DFO. Collected data from this study feeds the Atlantic Halibut Stock Assessment.

Scallop survey - Collaborative research with DFO. This project is being completed to gain insight into changes seen in the scallops physiology.

Lobster/crab study - Rock crab is an integral part of the lobster's diet, unfortunately we don't know enough about the current rock crab biomass to ensure there will continue to be enough food for the lobster as their population grows. The project titled: "Effects of exploitation patterns and fluctuations in lobster (*Homarus americanus*) and rock crab (*Cancer irroratus*) abundances on lobster diet and condition in the Gulf of St. Lawrence; is the predator-prey interaction at risk?"; has been drafted and we are currently exploring funding opportunities to move forward. The project, if we are successful with funding, will be a collaboration between the Prince Edward Island Fishermen's Association, DFO and the Province of PEI.

Bio-collectors - This is a study that has been ongoing in the Gulf region for 10 years now and is a collaboration between the Prince Edward Island Fishermen's Association, DFO and the Province of PEI. This project gives us a look at the number of lobster settling in sites around Prince Edward Island at stage 4 to gather information on trends of higher or lower settlement annually. The hope of this project is to find a correlation between lobster settlement and lobster landings in the future. The collectors also provide an opportunity to collect data on some other species as well, including rock crab, mud crab, cunner and other fish species.

Lobster Node - This is an industry lead, pan-Atlantic group bringing DFO, industry and acedemia together to try to answer questions from the industry, specifically on lobster.

Bait Alternatives - foraging fish are normally used as bait in the lobster industry. These stocks are declining and fishers are, pre-emptively, looking for other sources of bait while they sit on working groups to come up with a plan to rebuild the stocks.

Temperature Probes in the Northumberland Strait - This is at the request of harvesters who are seeing bottom water temperature changes in the Northumberland Strait and they are curious if certain species will vacate the vicinity due to unsuitable habitat. This will be monitoring 10 locations in the Northumberland Strait for 6 months a year.

Acoustic Herring and variable mesh nets - Collaborative with DFO. This has been ongoing for many years to better understand the biomass of herring. The data is used to feed the stock assessment.

Northern Pulp Nova Scotia Environmental Assessment Registration Document Replacement Effluent Treatment Facility

Technical Review of the EA Registration Document

March 8, 2019

Alison Fraser, MSc, QP_{RA} (226) 706 – 8888 ext. 117 alison.fraser@sharedvaluesolutions.com

62 Baker Street Guelph, ON, Canada N1H 4G1

sharedvaluesolutions.com

Environmental Assessment Branch Nova Scotia Environment P.O. Box 442 Halifax, NS, B3J 2P8 Fax: (902) 424-6925

March 8, 2019.

On behalf of the Gulf Nova Scotia Fleet Planning Board, and their Fishermen's Working Group for the Northern Pulp Environmental Assessment, it is our pleasure to provide you with the results of our technical review of the "Northern Pulp Nova Scotia Environmental Assessment Registration Document - Replacement Effluent Treatment Facility," dated January 31, 2019. In our professional opinion, the Project cannot be approved as currently registered. Given the numerous issues, data gaps and information gaps we have identified in the technical review, we recommend that the Minister, as per Section 13 of the Environmental Assessment Regulations made under Section 49 of the Environment Act, determine either that

- the registration information is insufficient to allow the Minister to make a decision and additional information is required (Section 13(1) (a)), or
- a review of the information indicates that there may be adverse effects or significant environmental effects caused by the undertaking and an environmental-assessment report is required (Section 13(1) (d)).

Please do not hesitate to get in touch with us if you have any questions or concerns with the enclosed report.

With best regards,

alism peaser

Alison Fraser, MSc, QPRA Project Director Risk Assessment Specialist, Shared Value Solutions Ltd.

Contents

1.0	In	ntroduction	13
1.	1	Review Objectives	13
1.	2	Project Description	14
1.	3	Regulatory Context	15
2.0	S	Summary of Technical Review of the Receiving Water Study	20
	2.1.2	.2 Far-Field Modelling	22
	2.1.3	.3 Near-field Modelling	23
	2.1.4	.4 Engineering Considerations	24
	2.1.	.5 Summary	25
3.0	Ν	Northern Pulp EA Review Findings	25
3.	1	Effluent Treatment Facility Design	25
	3.1.3	.1 Summary of EA Content	25
	3.1.2	.2 Evaluation & Recommendations	26
3.	2	Effluent Modelling	28
	3.2.2	.1 Summary of EA Content	28
	3.2.2	.2 Evaluation & Recommendations	
3.	3	Marine Fish and Aquatic Habitat	31
	3.3.3	.1 Summary of EA Content	31
	3.3.2	.2 Evaluation & Recommendations	32
3.	4	Marine Mammals	42
	3.4.:	.1 Summary of EA Content	42
	3.4.2	.2 Evaluation & Recommendations	45
3.	5	Cumulative Effects	49
	3.5.3	.1 Summary of EA Content	49
	3.5.2	.2 Evaluation & Recommendations	50
3.	6	Human Health	50
	3.6.2	.1 Summary of EA Content	50
	3.6.2	.2 Evaluation & Recommendations	51
3.	7	Socio-Economics	53

5.0	Refer	ences	65
4.0	Concl	usion	64
	3.7.2	Evaluation & Recommendations	55
	3.7.1	Summary of EA Content	53

Executive Summary

The Northern Pulp Nova Scotia (NPNS) proposed Replacement Effluent Treatment Facility (ETF) ("the Project") is regulated under the Government of Nova Scotia's Environmental Assessment Branch and is currently being considered a Class 1 assessment under the Province of Nova Scotia's environmental assessment (EA) process. The proposed ETF for the NPNS pulp mill is an AnoxKaldnes BAS[™] process that will be designed to treat maximum wastewater flow of 85 MLD (62 MLD avg) and is based on a combination of traditional activated sludge treatment (AST) process with moving bed bioreactors (MBBR) for wastewater treatment. Following the public review period of the Class 1 EA Registration Documents for the proposed ETF, the Government of Nova Scotia's Minister of the Environment must decide if additional project information or reporting is required, or if the undertaking is approved or rejected.

As part of the public review period, Shared Value Solutions Ltd. (SVS), on behalf of the Gulf Nova Scotia Fleet Planning Board, and their Fishermen's Working Group for the Northern Pulp Environmental Assessment, completed a technical review of the Environmental Assessment (EA) Registration Documents provided by NPNS. The review focused on the technical aspects of the proposed Project design, as well as the validity and comprehensiveness of the environmental effects assessment within the EA. The review yielded a number of issues and concerns related to potential environmental impacts. Where applicable, recommendations for each identified issue or concern, based on the professional opinion of SVS, are provided to the Minister herein.

From a plant design perspective, overall, the new proposed plant design appears to offer a more modern, high rate treatment option than the current wastewater facility design based on aerated stabilization basin (ASB) technology primarily using natural basins and poorly designed "release" (i.e., discharge) into the Northumberland Strait. The proposed design appears to offer increased capability to control operations and optimize treatment performance within a modern wastewater treatment plant than the current infrastructure. Waste solids management and closed loop design for clarifier sludge could be an added benefit of the proposed design. However, several issues and concerns were identified related to the ETF design that must be addressed including whether the EFT will be able to meet more stringent discharge regulations being considered in proposed revision to the *Pulp and Paper Effluent Regulations* (target publication date of 2021).

With respect to effluent modelling, the information provided is considered to be lacking or inadequate. A major limitation of the modelling work (Stantec 2017, 2018) has been the use of water quality data that are old, from different years, from different locations, and from Pictou Harbour instead of Caribou Harbour and the CH-B location. In addition, water-column stratification (ambient density) was not considered in the modelling and the non-tidal counter-clock flow gyre existing around Pictou Island (approximately 6 km from CH-B) was not included/combined with the southeast-northwest direction flow pattern. These limitations must be re-evaluated and included in the modelling, as the MIKE 21 and CORMIX predictions on effluent dispersal and effluent build-up are incorrect.

With respect to the potential for adverse environmental effects to occur as a result of the Project, there were numerous issues and concerns identified related to a lack of detailed assessment on the potential impacts to marine life. More specifically, NPNS has attempted to assess impacts using outdated literature, and without conducting any current field or lab assessments to understand both the short-term and long-term impacts of the proposed Project. Further, NPNS is not clear on what the actual effluent will be comprised of when it is released to the Northumberland Strait, nor does it fully consider the cumulative impacts of the known effluent over time. Without knowing the composition of the effluent (i.e., chemical concentrations), and with the lack of relevant existing environmental conditions data, it is unclear how NPNS can make any informed or accurate predictions on the potential adverse environmental impacts of the proposed Project on the marine environment.

Similarly, a human health risk assessment (HHRA) was not completed as part of the EA Registration Document submission. Rather, NPNS completed a Human Health Evaluation (HHE). A quantitative assessment of potential exposures to project-associated chemicals of potential concern (COPC), and resulting human health risks (if any), was not completed. This is, in part, due to the project-specific effluent chemistry not being fully known (result of the chemical process engineering design work not being complete). As such, the chemical composition of the effluent, including chemical concentrations, has not been fully characterized and potential risks to human health have not been quantified.

Based on a review of the socio-economic baseline information provided and effects assessment conducted of the local assessment area's social and economic environment, it is evident that information has been omitted that prevents an accurate analysis of the potential risks the Project will have on the region's economic and socio-economic wellbeing. Dismissals of adverse effects on fish and fish habitat are informed by a reported lack of, or outdated, data and are therefore misleading in assumptions. This, in turn creates a very low level of confidence in the predicted lack of effects on socioeconomic related values and interests held by the region's stakeholders, public, First Nations and the fishing and fish processing sectors.

Overall, the EA does not acknowledge or address the magnitude of potential adverse socio-economic effects on the region's commercial fisheries and the thousands of (Indigenous and non-Indigenous) citizens who are dependent on a resilient fishery. Nor does it adequately consider or address the potential for adverse effects to the marine environment and human health. As such, in our professional opinion, the Project cannot be approved as currently registered. Given the numerous issues, data gaps and information gaps identified in the EA, and summarized below, we recommend that the Minister, as per Section 13 of the Environmental Assessment Regulations made under Section 49 of the Environment Act, determine either that

- the registration information is insufficient to allow the Minister to make a decision and additional information is required (Section 13(1) (a)), or
- a review of the information indicates that there may be adverse effects or significant environmental effects caused by the undertaking and an environmental-assessment report is required (Section 13(1) (d)).

Summary of Issues and Recommendations

The following is a summary list of issues and recommendations, as identified in the technical review that follows the Executive Summary. Numbering has been kept consistent between the summary list and main technical review for ease of reference.

Addendum Receiving Water Study:

- **2.1:** NPNS must provide modelling results for the proposed CH-A effluent discharge location.
- **2.2/2.7:** NPNS must provide a study on sea floor ice scouring at, and near, the proposed outfalls CH-A and CH-B and make recommendations on the best location for an effluent outfall diffuser.
- **2.3:** NPNS must provide field verification of the water column stratification, and these measurements, taken at the CH-A and CH-B locations, and other areas, should be part of a water quality survey.
- **2.4:** Provide a water quality study for the CH-A and CH-B locations and other related areas, including Caribou Harbour and the surroundings of Pictou Island, using numerous sampling stations. As part of this study, one or two reference areas should be considered with several sampling stations.
- **2.5:** Provide an explanation as to how to reconcile the input of MIKE 21 July data for use in CORMIX simulations for August–September, and possible implications of this on the study results.
- **2.6:** A rationale for not completing an industry-standard characterization of the effluent plume at CH-A or CH-B must be presented.

Effluent Treatment Facility Design

- **3.1:** Environment and Climate Change Canada has proposed updates to the Pulp and Paper Effluent Regulations (PPER), to account for changes in the pulp and paper industry, as well as to address findings from EEM studies indicating that the PPER do not adequately protect fish, fish habitat, and the environment (ECCC, 2017). NPNS must address whether or not the effluent from the project will meet the requirements of the proposed updates to the PPER.
- 3.2: More information should be provided on the data collected in the lab trials conducted in Fall 2018 on the NPNS effluent and site visits to the two Kraft mills in Sweden using BAS[™] technology in terms of specific water quality data (BOD, TSS, P, N & COD) and relevant regulations (current and proposed).

- **3.3:** Consideration of the non-biodegradable organic fraction within the effluent should be given, with more specific information on components in effluent that contribute to non-biodegradable fraction of COD, and any other efforts that could be considered in the pulp mill process design to lower COD in the mill effluent prior to biological wastewater treatment.
- **3.4:** More information needs to be provided on metal concentrations in the current ASB effluent (Point C) and metal concentrations expected to be found in the effluent of the proposed ETF.
- 3.5: More detail should be supplied on (1) what "key performance indicators" will be monitored on daily basis, and (2) what monitoring/testing will be conducted on the influent into the ETF; specifically, what water quality and/or operational parameters will be part of this monitoring/testing framework.
- **3.6:** Historical impacts of the Boat Harbour Treatment Facility are of major concern. NPNS must clearly outline how the proposed effluent treatment facility will be designed and operated in a way that will mitigate the potential for similar environmental impacts to occur.

Effluent Modelling

- **3.7:** Summary information should be provided in the main EA text on both the Preliminary Receiving Water Study and the Addendum Receiving Water Study. How Mike 21 and Cormix models were used should be clearly stated.
- **3.8:** NPNS must provide a water quality study for the CH-A and CH-B locations and other related areas, including Caribou Harbour and the surroundings of Pictou Island, based on numerous sampling stations. As part of this study, one or two reference areas should be considered with several sampling stations.
- **3.9:** Provide a brief description in Section 8.11.5 of what the Follow-up and Monitoring Program entails.

Marine Fish and Aquatic Habitat

• **3.10**: In the interest of assessing the impacts to fish with the highest level of scrutiny and precaution, in our professional opinion, it is recommended that the Proponent should approach the EA with an analysis that goes beyond the provision of Serious Harm to a shift in focus on avoiding harmful alteration, disruption or destruction (HADD) of fish and fish habitat. This approach is being contemplated in the proposed *Fisheries Act* amendments under Bill C-68. Given the high level of concern from fisheries groups regarding harmful alteration, disruption or destruction of fish and fish habitat of the Northumberland Strait, and the potential adverse effects of the Project, Northern Pulp must assess the proposed activities and design of the Project in the context of HADD avoidance. This approach enhances the measures described within the EA.

- **3.11:** NPNS needs to provide more detail on spill response and safeguards against potential accidents or malfunctions along the terrestrial portion of the pipeline. Without this information, it is unclear how the Minister can make an informed decision regarding whether adverse effects or significant environmental effects may be caused by the undertaking and whether these effects can be mitigated.
- **3.12**: In our professional opinion, a comprehensive multi-year baseline study on all marine species present within the Northumberland Strait must be completed in order to understand potential adverse impacts that may result from project activities. Robust studies are required to better understand each species, and the potential impacts the project could have on each. This type of baseline study is the foundation of an EA, especially one focused on a project that has the potential to cause serious environmental impacts. The Minister needs to decide "whether environmental baseline information is sufficient for predicting adverse effects or environmental effects related to the undertaking" (Nova Scotia Environment, 2018). We see no evidence of such baseline information in the EA.
- **3.13**: In our professional opinion, a more detailed environmental assessment that considers all potential fisheries in the Northumberland Strait needs to be completed to adequately assess project impacts. The EA should consider every species fished commercially in the area and should look at sensitivities of all of those fish to changes in water quality and negative health effects of contaminants
- **3.14:** The Environmental Management Plan and the Environmental Protection Plan must be completed and circulated for review and consultation with stakeholders prior to the project being approved. The Project should not be approved until all stakeholders have been consulted on all environmental protection measures within the Environmental Management Plan.
- **3.15:** The proponent must provide more detail on what is meant by moving the alignment to the centre of the road, and on which watercourses, in particular, they intend to carry this out.
- **3.16**: In our professional opinion, geotechnical assessments must be completed and reviewed by project stakeholders. This information is required before the Minister can make an informed decision on all potential impacts of the project. In addition, the Environmental Protection Plan must address prevention and emergency response related to horizontal directional drilling.
- **3.17a:** The EA must provide more details on mitigating benthic disturbance and subsequent TSS mobilization during pipe construction in the Northumberland Strait.
- **3.17b:** The EA should examine the possibility of horizontal directional drilling (HDD) to facilitate the placement of the pipe into the Northumberland straight. HDD could reduce the risks of inwater works that could significantly impact fish and benthic communities.

- 3.18a: The EA must outline species-specific limits of tolerance with respect to the above
 parameters described as well as upper and lower limits for chemicals specific to mill effluent. A
 robust assessment of how changes to the marine environment, and the discharge of effluent
 contaminants, impact species inhabiting the area must be completed in order to understand
 impacts of the proposed project.
- **3.18b**: The proposed changes to the PPER must be considered when addressing the speciesspecific effects including a quantitative evaluation of the impact of the proposed changes on the assumptions and conclusions of the EA.
- **3.19**: In our professional opinion, a project of this magnitude warrants comprehensive field work investigations to be completed. NPNS should conduct a comprehensive baseline assessment to characterize current conditions of the marine environment within the project assessment area, including sediment and water quality.
- **3.20**: The proponent should collect and analyze current water quality data, from the proposed outfall location, in order for the EA to adequately assess impacts to the water quality from the project, and to adequately plan for preventing or mitigating those potential impacts.
- **3.21:** Northern Pulp must collect current and relevant data on sediment characterization at the proposed outfall location.
- **3.22:** Proper research needs to be completed to understand possible effects of the effluent on herring spawn, including sub-lethal effects. A rebuilding plan for herring is currently being developed to ensure the regrowth of the stock, and therefore any potential impacts to herring spawn must be fully considered in the EA.
- **3.23:** Research must to be completed to understand possible sub-lethal effects of the effluent on mackerel eggs. Currently, the stock is in the critical zone (DFO, 2017) and a rebuilding plan is being developed to ensure the regrowth of the stock. The EA must clearly assess how potential impacts from the project could affect stock regrowth.
- **3.24:** Atlantic sturgeon must be considered in the assessment, and potential impacts to the species identified.
- **3.25:** As stated in Appendix R of Northern Pulp's EA Registration documents, it is recommended that more research be completed on the effect of the effluent on lobster in each life stage. It is important to highlight that the recommendation given in Appendix R regarding more research on the effect of effluent on lobster must be followed through and completed.
- **3.26:** Detailed field assessment on the sea scallops that inhabit the area near the proposed outfall location must be completed prior to the release of the proposed effluent to ensure there

will be no negative effects on the sea scallops. Otherwise, it is unclear how the Minister will be able to determine if adverse effects or significant environmental effects are likely to occur.

- 3.27: Detailed field and lab work must be carried out as part of a comprehensive EA that
 assesses and quantifies sublethal, chronic and cumulative effects on lobster larvae. The level of
 stakeholder concern regarding lobsters warrants the need for increased scientific
 understandings and fulsome assessment of impacts, in order for the Minister to make an
 informed decision regarding potential impacts of the project to lobster.
- 3.28: Individual species cannot be pinpointed to specific locations within the Northumberland Strait. They do have traditional habitat and areas they are commonly found, but individuals are not restricted to these areas only. The ability, and likelihood, of each species to move throughout the Northumberland Strait must be considered and accounted for in a robust environmental assessment.
- **3.29:** The Northumberland Strait must be also assessed as an interwoven and interdependent ecosystem, not only on an individual species by species basis. NPNS must consider these ecosystem impacts in a more comprehensive and robust environmental assessment. Otherwise, it is unclear how the Minister will be provided with sufficient information to make an informed decision about the likelihood of adverse impacts.
- **3.30**: Despite the PPER regulations, given the high level of concern expressed by the public and harvesters, a biological monitoring program should be implemented prior to final commissioning of the proposed treatment plant and effluent outfall. The collection of this baseline information will significantly strengthen the interpretive power of the biological monitoring program as a whole. This baseline information will allow the biological monitoring program data to be analysed in a BACI (Before-After-Control-Impact) framework so that potential effluent related effects can be considered both spatially (i.e., exposure vs. reference) and temporally (i.e., predischarge vs post-discharge).
- **3.31:** Again, despite the PPER regulations, in our professional opinion, and due to the high level of concern expressed by the public and harvesters, the biological monitoring program should be implemented and remain continuous as soon as effluent is released to the Strait. Considering the level of concern from stakeholders in the region and coupled with the uncertainty of the effluent composition and the limited collection of existing environmental condition data, it is imperative that NPNS implement a robust continual biological monitoring program prior to effluent discharge and that continues through operations.
- **3.32a:** The EA must consider both lethal and sublethal effects of the Project and must go beyond the provision of "serious harm" to incorporate how effects, other than direct mortality, could negatively impact the fisheries of the Strait.

• **3.32b:** In addition, analysis and monitoring of lethal and sublethal effects should be carried out independently of one another on locally important species such as lobster, crab, herring and Atlantic salmon.

Marine Mammals

- **3.33**: An ERA is required that considers ecological receptors, including marine mammals such as North Atlantic Right Whales, who may be exposed to chemicals of potential concern from the proposed project.
- **3.34**: The assessment of project effects on the marine mammals, sea turtles, and marine birds VEC (Section 8.13) is considered to be incomplete and underscores the need for NPNS to conduct field studies for this project, especially given growing uncertainty regarding the distribution of North Atlantic Right Whales in their summer foraging range.
- **3.35a:** NPNS must provide more detailed information on visual surveying methods and consider completing these in combination with other marine mammal monitoring methods such as the deployment of passive acoustic monitors or aerial (helicopter or drone) surveys.
- **3.35b:** NPNS must provide more information on Marine Mammals Observer (MMO) monitoring requirements, including information on reporting intervals, accessibility of reports to stakeholders, and whether reporting will trigger any adaptive management measures.
- **3.35c**: NPNS should consider requiring marine mammal monitoring during all project activities that require vessel travel.
- **3.36a:** More detailed and definitive information on the vessel traffic (including vessel type, size, route, speed, schedules) that will be required to complete Project activities must be provided and considered in the EA, given potential impacts to marine mammals.
- **3.36b:** NPNS should ensure that observers are present on all Project vessels to identify the presence and location of marine mammals and to ensure appropriate mitigation measures outlined in EA Section 8.13.3.2 are adequately triggered and implemented.

Cumulative Effects

- **3.37:** The EA must assess cumulative effects of the proposed project on the marine environment, in light of current stressors that have already been identified, including increases in surface water temperature and salinity, as well as decreases in oxygen saturation.
- **3.38:** Discussion is required around the interactions between potential impacts from the new ETF discharges from the outfall, and ferry discharges within the harbour and Strait, and in turn the implications for ecological and human health risks, from a cumulative effects assessment standpoint.

Human Health

- **3.39:** A robust and comprehensive assessment of potential health risks (i.e., through the completion of a Human Health Risk Assessment) is required in order to determine if adverse health effects from the project are likely.
- **3.40:** An adaptive management plan should be provided to address discrepancies between project assumptions and predictions, and what is found to occur in the environment once the project begins. This plan should include an assessment of changes to predicted risks to human health, should the project assumptions not hold true.
- **3.41:** The assessment of potential risks to human health associated with the project requires a fulsome understanding of both the exposure concentrations of Contaminants of Potential Concern (COPC) in the marine environment, and the exposure pathways identified as being of concern to human health (i.e., the consumption of fish and shellfish).
- **3.42:** A more robust assessment of baseline conditions (such as water quality, sediment quality, land use patterns, fish consumption rates and other relevant environmental attributes) must be completed prior to project approval, to understand potential risks to human health related to the project.
- 3.43: NPNS must confirm that the pilot study will be completed to evaluate the potential
 impacts to air quality due to the combustion of hog fuel and sludge in the power boiler and must
 outline adaptive management strategies should the results of the air monitoring and pilot study
 not align with the assumptions and predictions of the current assessment.
- **3.44:** If 2018 air monitoring data are available from Stantec (2019), they should be included in the assessment.
- **3.45**: Details are required regarding adaptive management measures, to address the potential for actual air emissions to be greater than predicted emissions (based on modelling exercises). In addition, further discussion in the EA is needed regarding what is meant by an artifact of model inputs related to modelled exceedances of H₂S (Section 9.2.4.1).
- **3.46:** The potential risks to human health associated with cumulative impacts of the project and current stressors must be considered in the assessment.

Socio-Economics

- **3.47:** Provide information on the pipeline's lifecycle length and anticipated activities for its decommissioning (i.e., expansion, upgrades, replacement etc.)
- **3.48:** NPNS must include VEC, and more importantly, a robust and consistent effects assessment on indicators related on the acknowledged VEC "health of communities" to capture missing elements of health and wellbeing, including the protection of a resilient fishery and associated economies including harvesting and processing plants; employment, analysis of economic risks and/or benefits at community, regional and provincial level; description for, and management plans for anticipated workforce at both construction and operation phases.

- **3.49a:** Apply an actual ecosystem and integrated approach for the effects assessment that considers VEC interdependencies and an economic risk analysis to other economic sectors in the region fisheries in particular.
- **3.49b:** Provide a detailed description of the region's economic reliance on commercial fisheries, including individual harvester economic baselines and dependencies as they relate to fishing.
- **3.49c:** Provide analysis of the Project's construction and operation phase effect mechanisms and interactions with harvesters' ability to fish (in terms of access); as well as potential risks to fishing economy due to risks to species' habitat, spawning area integrity and health.
- **3.49d:** Describe how individuals within the lobster fishery (and other fisheries) will be compensated or accommodated for losses as a result of the Project's construction and/or operations activities. An explicit acknowledgement of the adverse economic impacts (and in turn social impacts on regional and community wellbeing and health) for fishers when even just a few days of fishing are interrupted is critical for a balanced effects assessment.
- 3.50: NPNS must provide a balanced and accurate description of the existing regional socioeconomic context, including regional health and wellbeing dependencies on the fish harvesting and fish processing sectors. Using complete baseline information, an economic effects assessment is required that carries forward information referred to within the baseline section including: project effect mechanisms and interactions with existing fisheries economic sector, at a granular level i.e., net losses anticipated due to forecasted days of interruptions due to construction and operations); human health effect mechanisms and interactions with economic risks related to fish processing plant operation requirements and interactions with effluent discharges; project workforce requirements; wages and salaries, and supply chain procurement needs during both construction and operations.
- **3.51:** Provide more baseline information describing the specific aspects of the tourism sector within the LAA that have inter-connections with water either from recreational usage or from drinking and/or other water uses. These details would be relevant within an eco-system approach to the socio-economic impact assessment.
- **3.52:** NPNS must provide information and analysis of the following:
 - Discussion and analysis of risks and in turn, potential adverse social impacts to individuals and families who rely on uninterrupted or undisturbed access to the fisheries; including mitigations for avoiding this adverse impact.
 - Identification of positive socio-economic effects from employment during the 21month construction period as well as operations and maintenance. It is acknowledged that the project description states that no additional jobs would be created during operations as existing personnel would be retrained for the new facility. Both phases of the Project need to be discussed in terms of what economic benefits would occur (even if no change during operations) within the socio-

economic effects assessment. This allows the impact evaluation to demonstrate both the potential negative as well as the potential positive socio-economic impacts that would be predicted as a result of the Project's various activities, including employment generation and associated indirect and induced impacts during the 21 months' construction.

- A description of human and ecological health pathways, project interactions and effect mechanisms within the socio-economic effects assessment including a human health risk assessment (i.e., drinking water within the LAA's wells; recreational water usage; Indigenous community members' land uses, water and wild foods consumption).
- A discussion and demonstrated planning for health and safety considerations of the surrounding communities as related to construction, should there be a temporary, non-resident workforce hired for construction. Include whether the construction workforce will be housed in surrounding local communities and/or within temporary workcamps. How many workers are anticipated to be hired for the construction phase?
- **3.53a:** NPNS must provide discussion and analysis of potential effects to the health and integrity of the region's commercial fisheries based on results of more comprehensive effluent modelling, data upgrades and effects analysis as per the results of this EA's technical review of these inter-dependent VECs.
- **3.53b**: NPNS must provide discussion and analysis of tourism impacts and human health risks related to Indigenous land and resources, and non-Indigenous lands and resources (i.e., drinking water and marine based recreation).
- **3.53c:** NPNS must provide discussion and analysis of potential impacts of pipeline operations and maintenance (specifically integrity digs) on land and resource use for both Indigenous and non-Indigenous citizens.
- **3.54:** NPNS must provide more fulsome consideration, description and commitment for specific mitigation, management and monitoring measure to address both the ecological and social factors related to the Project's activities at construction and operations as listed in previous comments.
- **3.55**: NPNS must provide a balanced and accurate description of the existing regional socioeconomic context, included regional health and wellbeing dependencies on the fish harvesting and fish processing sectors. Using complete baseline information, an economic effects assessment is required that carries forward information referred to within the baseline section including: project effect mechanisms and interactions with existing fisheries economic sector, at a granular level (i.e., net losses anticipated due to forecasted days of interruptions due to construction and operations); human health effect mechanisms and interactions with economic

risks related to fish processing plant operation requirements and interactions with effluent discharges; project workforce requirements; wages and salaries, and supply chain procurement needs during both construction and operations.

1.0 Introduction

Shared Value Solutions Ltd. (SVS) was retained by the Gulf Nova Scotia Fleet Planning Board, and their Fishermen's Working Group for the Northern Pulp Environmental Assessment, to conduct a technical review of the Northern Pulp Nova Scotia (NPNS) Environmental Assessment (EA) Registration Document for the Replacement Effluent Treatment Facility (the Project). The purpose of this report is to provide a critical technical review of the EA report prepared by Dillon Consulting Ltd. (Dillon, 2019), which is intended to subsequently inform the Minster's decision regarding project approval. The report aims to outline scientific data gaps and deficiencies in the EA that may result in adverse effects or significant environmental effects, or a lack of sufficient information to determine whether such effects might occur, should the Project proceed.

The review was conducted by:

- Alison Fraser, M.Sc. Risk Assessment Specialist and Project Director (SVS)
- Levi Snook, B.Sc. Aquatic Ecologist and Project Manager (SVS)
- Jeremy Shute, M.A. Managing Partner (SVS)
- Alison Gamble, M.ES., C.Chem. Environmental Scientist and Project Coordinator (SVS)
- Allie Mayberry, M.A., B.Sc. Wildlife Biologist (SVS)
- Rachel Speiran, M.A. Senior Community Development Specialist (SVS)
- Dr. Bernard Lebeau, Ph.D. Senior Aquatic Scientist (Lebeau and Associates Inc.)
- Dr. Margaret Walsh, Ph.D. Wastewater Treatment Specialist

1.1 Review Objectives

The objective of this review is to outline data gaps and deficiencies in the EA. This has been completed using best science and professional judgement. It must be noted, as set out in Section 34(1) of the *Environment Act*, that the Minister must demonstrate that all of the following pieces of information were considered in formulating her decision:

- The location of the proposed undertaking and the nature and sensitivity of the surrounding area;
- The size, scope and complexity of the proposed undertaking;
- Concerns expressed by the public and aboriginal people about the adverse effects or the environmental effects of the proposed undertaking;

- Steps taken by the proponent to address environmental concerns expressed by the public and aboriginal people;
- Whether environmental baseline information submitted under subclause 9(1A)(b)(x) [of the Environmental Assessment Regulations, which states "Environmental baseline information"] for the undertaking is sufficient for predicting adverse effects or environmental effects related to the undertaking;
- Potential and known adverse effects or environmental effects of the proposed undertaking, including identifying any effects on species at risk, species of conservation concern and their habitat;
- Project schedules where applicable;
- Planned or existing land use in the area of the undertaking;
- Other undertakings in the area;
- Whether compliance with licences, certificates, permits, approvals or other documents of authorization required by law will mitigate the environmental effects;
- Such other information as the Minister may require

As such, we expect that the Minister will consider all technical review comments contained within this review during the decision-making process, and address concerns accordingly.

1.2 **Project Description**

The Northern Pulp bleached kraft mill is located at Abercrombie Point adjacent to Pictou Harbour in Pictou County, Nova Scotia and has been operating, under various ownerships, since 1967. The mill produces bleached kraft market pulp at a rate of 280,000 to 300,000 air-dry tonnes per year (ADt/y). Currently, the mill's effluent is treated at a wastewater treatment plant located in the western portion of Boat Harbour, 3.5 km east of the mills across the East River. The current treatment plant consists of constructed sedimentation basins and a natural basin prepared with baffle curtains. Prior to the effluent being released into the Northumberland Strait via a weir in Boat Harbour, it passes through a large, natural final polishing/ stabilization basin. The *Boat Harbour Act*, which was enacted in May 2015, calls for the use of the current Boat Harbour effluent facility to cease as of January 31, 2020. As a result, a new wastewater plant and effluent discharge will be required prior to the 2020 deadline.

The proposed effluent treatment facility, as described in the Project EA report, will use a biological activated sludge process that combines Moving Bed Biofilm Reactor (MBBR) technology with conventional activated sludge. After the effluent has undergone treatment, it will travel along a 15.5 km long effluent transmission pipeline which follows the Highway 106 right-of-way for 11.4 km, then enters

Solutions

the water adjacent to the Northumberland Ferries marine terminal and continues for 4.1 km. The effluent pipeline will be buried and weighted down using concrete collars. The effluent transmission pipeline will continue through Caribou Harbor to the Northumberland Strait, where it eventually terminates at an engineered marine outfall northeast of the Northumberland Ferries marine terminal (Figure 1). It is proposed that the effluent pipeline will end at a 50 m long diffuser with three outlets spaced 25 m apart. The proposed outfall will be capable of discharging up to 85,000 m³ of treated effluent per day, with a peak discharge velocity of 4.6 m/s from each port. The Proponent predicts that the proposed outfall design will result in an approximate dilution ration of 144:1.

Figure 1. Proposed Project Route and Outfall Location (Based on Figure 1.1-2 of Dillon Consulting, 2019)

Should the Project receive all necessary approvals through the EA review process, it is anticipated that construction will occur for approximately 21 months, commencing after all applicable permits and approvals have been obtained. The Proponent is anticipating construction to start in the second quarter of 2019 but has noted that this will be weather dependent. The operation and maintenance phase of the proposed Project will start immediately after the construction phase, assumed to begin in the fourth quarter of 2020, and is anticipated to continue for several decades.

1.3 Regulatory Context

The NPNS proposed Replacement Effluent Treatment Facility ("the Project") is regulated under the Government of Nova Scotia's Environmental Assessment Branch and is being assessed through a Class 1 Environmental Assessment by the province.

The Government of Nova Scotia defines environmental assessment as the following:

"Environmental Assessment (EA) is a decision-making tool used to promote sustainable development by evaluating the potential environmental effects of major developments before they proceed. This is accomplished by involving the public along with various government departments and agencies during the environmental assessment.

Environmental assessment also promotes better project planning by identifying and addressing environmental effects at the earliest stages of project development and can save proponents time and money" (Nova Scotia Environment, 2018).

Projects classified as Class 1 undertakings are deemed to be smaller in scale and the level of concern to the public is considered unknown or uncertain (Nova Scotia Environment, 2018). This uncertainty means that the initial submission made by the proponent in Class 1 EA undertakings is subject to a public review period. Following the public review period, the Nova Scotia Minister of Environment will decide if a more comprehensive review and/ or public hearing process is required (Nova Scotia Environment, 2018).

In addition, following the review period, the Environmental Assessment Branch of Nova Scotia Environment will review all information received during the review. Based on the information received, the branch will proceed to provide the Minister with a report summarizing the issues received. The report will also include a recommendation for the Minister's decision (Nova Scotia Environment, 2018). The Minister has one of five options for a decision, as set out in section 13(1) of the Environmental Assessment Regulations made under Section 49 of the *Environment Act:*

- (a) The registration information is insufficient to allow the Minister to make a decision and additional information is required;
- (b) A review of the information indicates that there are no adverse effects or significant environmental effects which may be caused by the undertaking or that such effects are mitigable and the undertaking is approved subject to specified terms and conditions and any other approvals required by statute or regulation;
- (c) A review of the information indicates that the adverse effects or significant environmental effects which may be caused by the undertaking are limited and that a focus report is required;
- (d) A review of the information indicates that there may be adverse effects or significant environmental effects caused by the undertaking and an environmental-assessment report is required; or
- (e) A review of the information indicates that there is a likelihood that the undertaking will cause adverse effects or significant environmental effects which are unacceptable and the undertaking is rejected.

In order to reach this decision, the Minister must demonstrate the all of the following pieces of information were considered in formulating her decision as set out in Section 34(1) of the *Environment Act:*

- The location of the proposed undertaking and the nature and sensitivity of the surrounding area;
- The size, scope and complexity of the proposed undertaking;
- Concerns expressed by the public and aboriginal people about the adverse effects or the environmental effects of the proposed undertaking;
- Steps taken by the proponent to address environmental concerns expressed by the public and aboriginal people;
- Whether environmental baseline information submitted under subclause 9(1A)(b)(x) [of the Environmental Assessment Regulations, which states "Environmental baseline information"] for the undertaking is sufficient for predicting adverse effects or environmental effects related to the undertaking;
- Potential and known adverse effects or environmental effects of the proposed undertaking, including identifying any effects on species at risk, species of conservation concern and their habitat;
- Project schedules where applicable;
- Planned or existing land use in the area of the undertaking;
- Other undertakings in the area;
- Whether compliance with licences, certificates, permits, approvals or other documents of authorization required by law will mitigate the environmental effects;
- Such other information as the Minister may require

The following figure outlines all of the steps within a Class 1 Environmental Assessment.

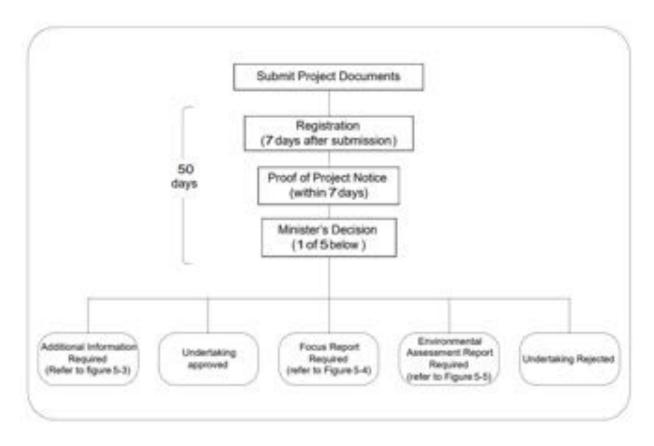


Figure 2. Class 1 Environmental Assessment Process Diagram (Source: Nova Scotia Environment, 2018)

In the context of a Class 1 EA in Nova Scotia, the most rigorous outcome possible is the completion of an environmental assessment report for the Project. The process steps for the completion of an EA report are identified in Figure 3 below.

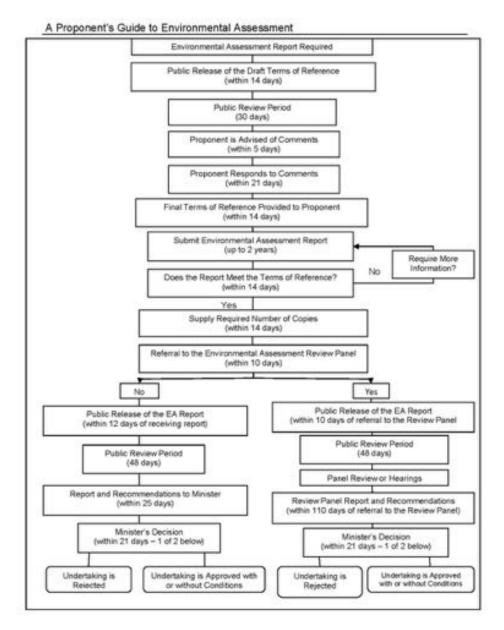
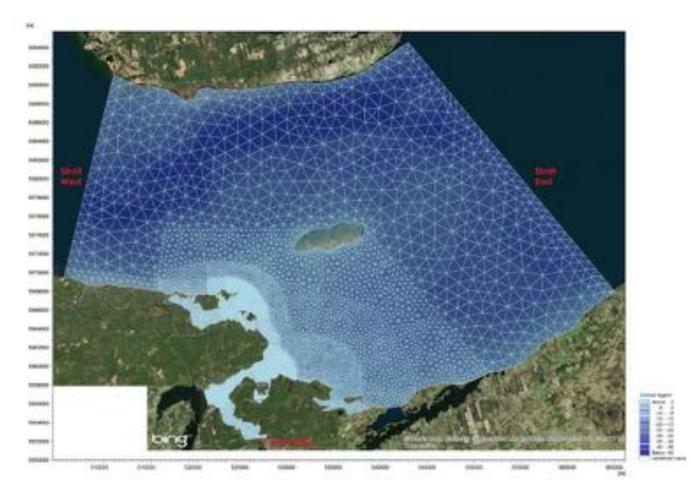


Figure 3. Class 1 EA - Environmental Assessment Report Required (Source: Nova Scotia Environment, 2017)


2.0 Summary of Technical Review of the Receiving Water Study

In preparation for, and to inform, the technical review of the EA Registration Documents, a review of Addendum Receiving Water Study for Northern Pulp Effluent Treatment Plant Replacement Project – Additional Outfall Location CH-B, Caribou Point, Nova Scotia dated December 19, 2018, was completed by Dr. Bernard Lebeau. A summary of the identified issues and concerns from the ARWS is provided below (Section 2.1).

Background

The Preliminary Receiving Water Study for Northern Pulp Effluent Treatment Plant Replacement in Pictou Harbour dated August 11, 2017, had identified the discharge location Alt-D as the preferred option, however further studies have provided evidence for seabed ice scour at a water depth of 11 m. This new information deemed the preferred location Alt-D not technically feasible for the outfall. Consequently, Stantec conducted additional modelling and prepared the 'Addendum Receiving Water Study' (ARWS) to investigate other potential outfall locations. The computational domain and boundaries for far-field modelling used in the ARWS are shown in the following figure.

Figure 4. Computational Domain Boundaries for Far-Field Modelling (Source: Stantec, 2018)

The far-field modelling conducted for the ARWS identified two alternate discharge outlet locations, CH-A and CH-B off Caribou Point (see figure below). The two alternate discharge outlet locations are 540 m apart, and in 25 m (CH-A) and 20 m (CH-B) water depths. Further analysis determined that CH-B was the preferred location of the two alternate options, with a preferred diffuser design of three ports, each with a 0.3 m opening, horizontal angle of 0°, and a vertical angle of 20°. Outfall CH-B was further analyzed in the near-field modelling portion of the ARWS as the preferred outfall location.

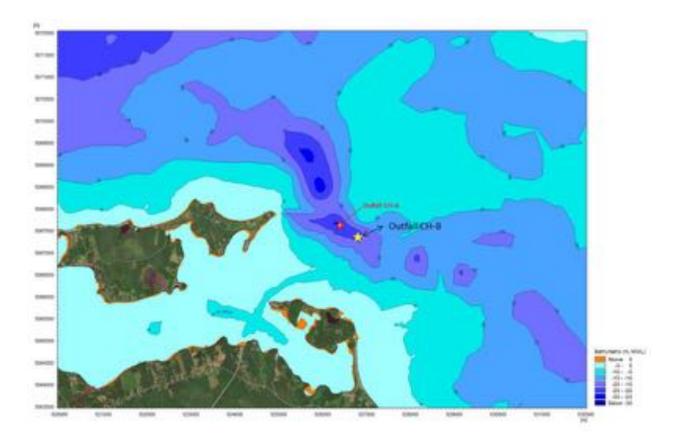


Figure 5. Outfall Locations for CH-A and CH-B

2.1.2 Far-Field Modelling

A two-dimensional (2D) model was used to simulate far-field effluent dispersion at two alternative potential discharge locations (CH-A and CH-B). The MIKE 21 model was used in the assessment.

Issue 2.1: There are no results from the dispersion modelling presented for the effluent discharge at the CH-A outfall location; results from only the CH-B outfall location were presented (Section 2.2, Page 5). How can the reader conclude that the "Dispersion modelling results from effluent discharges from CH-A and CH-B outfall locations indicate that the CH-B discharge provides relatively higher dilution and less potential effluent impact on Caribou Harbour water" without seeing results from the dispersion modelling from the CH-A location? Furthermore, the CH-A location is in 25 m depth, while CH-B location is in 20 m depth. There is ice scouring evidence on the sea floor to suggest that the CH-B location may not be deep enough and that the CH-A may be found to be a more appropriate location. It is of note that divers have reported ice scouring as deep as 20 m (MacCarthy and Egilsson, 2019).

Recommendation 2.1: NPNS must provide modelling results for the proposed CH-A effluent discharge location.

Issue 2.2: "Outfall depth is often a bigger driver than exact position of the outfall" (Page 6). In our professional opinion, the most important driver in this type of study is "ice scouring" (See Section 1.3

Engineering Consideration). If ice scouring exists at or around the CH-B location, that location will not be suitable at the outset.

Recommendation 2.2: NPNS must provide a study on sea floor ice scouring at, and near, the proposed outfalls CH-A and CH-B and make recommendations on the best location for an effluent outfall diffuser.

Issue 2.3: The following comment applies to the PRWS as well as the ARWS. For modelling purposes with both Mike21 and CORMIX, it is important to determine whether a stratification is present in the water column. With stratification of the water column (pycnocline), the effluent plume stops rising and becomes "trapped" at an intermediate depth, therefore reducing dilution. In this case, the effluent plume is expected to be building up and be (much) larger than expected. Therefore, field data must be provided to determine whether stratification exists at or near the effluent outfall. This stratification of the water column is particularly important in estuarine environments, such as the proposed outfall location. The water of the Northumberland Strait is primarily derived from the surface layer of the Gulf of St. Lawrence (AMEC 2007), which means it has more freshwater than ocean water, but also has the deep saline flow from the Gulf Stream that enters through the Cabot Strait. The data available for Pictou Harbour indicates that a stratification of the water column occurs there and yet this phenomenon was not addressed by Stantec (2017). It seems that stratification may be potentially occurring over the entire Strait. Again, field verification of the water column stratification is required at the CH-B location for modelling purposes; otherwise the modelling results presented in the ARWS cannot be assumed to be representative of the future effluent plume.

Recommendation 2.3: NPNS must provide field verification of the water column stratification and these measurements, taken at the CH-A and CH-B locations, and other areas should be part of a water quality survey.

2.1.3 Near-field Modelling

Near-field monitoring was completed to analyse effluent dispersion for the CH-B location, the proposed discharge location which was determined as a result of the far-field modelling results. The Cornell Mixing Zone Expert System (CORMIX, Version 11.0), a three-dimensional model, was used to analyze and assess near-field mixing. Issues and data gaps related to Section 3.0 of the ARWS are as follows:

Issue 2.4: "No historical water quality data are available for Northumberland Strait around the CH-B location. Data from neighboring Pictou Road (Stantec 2017) located about 6 km southeast were used" (Page 16, 2nd paragraph). In this statement, no additional descriptions of the Pictou Road data are provided. The PRWS (Stantec 2017) described the Pictou Road data as background water quality measurements from various studies (data that are between 10 to 29 years old), that were not even within range between sampling years and/or relative locations. The background water quality data needed for the CH-B location must be from that specific area, rather than from other locations, or from an assemblage of other locations, as is the case for the Pictou Road data. It is difficult to base this important study on poor background water quality data that cannot be reconciled in the first place. The background data used are certainly of historical importance, but should not be considered in the

modelling work for establishing background values for water quality parameters and effluent discharge objectives (EDO) to meet applicable water quality standards or environmental quality objectives (EQO) at the mixing zone boundary. Both winter and summer data should have been collected, and the water column at CH-B should have been measured as well to confirm a non-stratification, rather than being simply assumed as non-stratified. The characterization of water quality in the mixing zone (Section 3.2, pages 20 to 26) is only a temporary presentation of cursory information since the available background water quality data are poor. A water quality study for the specific area of the proposed CH-B effluent outfall location is required.

Recommendation 2.4: Provide a water quality study for the CH-A and CH-B locations and other related areas, including Caribou Harbour and the surroundings of Pictou Island based on numerous sampling stations. As part of this study, one or two reference areas should be considered with several sampling stations.

Issue 2.5: The Mike 21 model was run for a full month from July 1 to 31, 2016. To run CORMIX, the "Hydrodynamic information at the CH-B outfall location were obtained from Mike 21" (Page 16, last paragraph). However, as provided in the PRWS (Stantec 2017), "The CORMIX simulations were conducted for "August-September" <u>only</u>." How do we reconcile the input of Mike 21 July data for use in CORMIX simulations for August–September, as assumed (information is unclear and not found in the ARWS)?

Recommendation 2.5: Provide an explanation as to how we reconcile the input of MIKE 21 July data for use in CORMIX simulations for August–September.

Issue 2.6: Within the Environmental Effects Monitoring (EEM) Program, CORMIX model simulations are typically conducted for both winter and summer conditions, using the ambient characteristics at the study locations, etc. With the objective of gaining a more complete understanding of the dynamic processes that occur at the discharge and to obtain accurate estimates of the dilution potential that can be applied to effluent concentrations, the CORMIX model is (most often) used for simulations with varied discharges and ambient conditions. It is unclear if the work by Stantec (2017, 2018) was designed for effluent outfall siting purposes. A rationale for the delay in complete characterisation of the effluent plume at CH-A or CH-B performed under the EEM program, must be presented.

Recommendation 2.6: A rationale for not completing an industry-standard characterisation of the effluent plume at CH-A or CH-B must be presented.

2.1.4 Engineering Considerations

A preliminary description of engineering considerations, and the installation methodology, that could be undertaken as part of the construction of the CH-B outfall option is not provided in the ARWS. This aspect had been provided in the PRWS (Stantec 2017), with a follow up provided briefly in the *Introduction* section of the ARWS.

Issue 2.7: In the PRWS produced by Stantec (2017), marine geophysical and geotechnical notes for Alt-D, located outside Pictou Road in Northumberland Strait, were provided. It was noted that little was

known of the marine sediments that would be encountered along the proposed outfall pipe alignment. In the ARWS Section 1.0 (Page 1), it is reported that subsequent marine geophysical and geotechnical field investigations of the Alt-D location show evidence for seabed ice scour, indicating that this location, with a water depth of 11 m, was not suitable for an effluent outfall. In the ARWS, there are no indications as to whether there is adequate knowledge of the marine geophysical and geotechnical aspects for the new "preferred" CH-B location which is in a water depth of 20 m. The deeper location "might help avoid issues of ice scour" (Page 1, 2nd paragraph). Real data are needed on how far offshore and how deep ice scouring is occurring on the seabed of the Northumberland Strait. Observations by divers have indicated that seabed ice scouring is occurring at 20 m depth (MacCarthy and Egilsson 2019). Therefore, is the proposed depth of 20 m suitable and deep enough to avoid ice scouring? Is the CH-A location at 25 m depth more appropriate? Bottom ice scouring is a most important issue in deciding the location and depth of the future effluent outfall in the Strait. A marine geophysical and geotechnical assessment of the CH-B location may yield similar results as the Alt-D location, and thus the ARWS may not be of use. Consequently, we do not know whether CH-B is an appropriate location for an effluent outfall.

Recommendation 2.7: Provide a study on sea floor ice scouring at and near the proposed outfalls CH-A and CH-B. Make recommendations on the best location for an effluent outfall diffuser.

2.1.5 Summary

In summary, the MIKE 21 and CORMIX modelling work contained in the PRWS and ARWS requires new water quality data with field verifications of water column non-stratification in winter and summer, as well the inclusion of the non-tidal ocean flow that is a counter-clock gyre around Pictou Island. As such, only limited confidence can be given to the modelling results by either MIKE 21 or CORMIX in the PRWS and ARWS. Furthermore, since seabed ice scouring is occurring at a 20 m depth as per diver observations, and yearly maintenance of an effluent diffusor would preferably be kept to a minimum, a focus on the CH-A location may be more appropriate as the preferred option. Future modelling work should present information for both locations, CH-A and CH-B.

3.0 Northern Pulp EA Review Findings

3.1 Effluent Treatment Facility Design

3.1.1 Summary of EA Content

The proposed Effluent Treatment Facility (ETF) for the NPNS pulp mill is an AnoxKaldnes BAS[™] process that will be purchased from Veolia Water Technologies. The proposed ETF facility will be designed to treat maximum wastewater flow of 85 MLD (62 MLD avg). The BAS[™] technology is based on combination of traditional activated sludge treatment (AST) process with moving bed bioreactors (MBBR) for wastewater treatment. The use of AST is common in Canada and the United States for the

treatment of Kraft pulp mill wastewater. The integration of MBBR with AST for Kraft pulp mill wastewater treatment is not currently employed in North American Kraft pulp mills. However, there are many installations of the BAS[™] technology world-wide in the pulping sector, and including, specifically, softwood Kraft pulp mill wastewater systems.

Overall, within the EA, it is indicated that the proposed plant design offers a more modern, high rate treatment option than the current wastewater facility design based on aerated stabilization basin (ASB) technology primarily using natural basins and poorly designed "release" (i.e., discharge) into the Northumberland Strait. The proposed design appears to offers increased capability to control operations and optimize treatment performance within a modern wastewater treatment plant than the current infrastructure. Waste solids management and closed loop design for clarifier sludge is an added benefit of the proposed design.

A 35,000 m³ capacity spill basin is proposed which would be able to provide 10 to 13–hour storage of mill effluent at full production rates. This basin would be designed with a high-density polyethylene (HDPE) impermeable barrier liner.

3.1.2 Evaluation & Recommendations

Issue 3.1: The purpose of the *Pulp and Paper Effluent Regulations* (PPER) is to manage threats from all pulp and paper mills in Canada to fish, fish habitat, and human health originating from fish consumption (ECCC, 2017). The PPER prohibit the deposition of effluents that are acutely lethal to fish, set limits on suspended solids (SS) and biochemical oxygen demand (BOD), and require pulp and paper mills to carry out environmental effects monitoring (EEM) studies. Environment and Climate Change Canada has proposed updates to the PPER, which came into effect in 1992, to reflect upcoming changes to the pulp and paper industry and to address findings from EEM studies that indicate the PPER do not adequately protect fish, fish habitat, and the environment.

Despite the fact that effluent quality from pulp and paper mills has improved substantially and the level of compliance with PPER has been high, pulp and paper mill effluent has been shown to pose a risk to fish, fish habitat, and the environment. For example, 99.9 percent of BOD and SS samples from the 77 mills directly depositing effluent to water bodies were compliant with the PPER in 2015. However, EEM studies demonstrated that effluent from 70% of pulp and paper mills are impacting fish and/or fish habitat, and 55% of these effluent deposits pose a higher risk to the environment (ECCC, 2017). To address these findings, the proposed updates to the PPER include:

- Reductions to BOD and SS discharge limits;
- Setting limits for phosphorous and nitrogen discharge to reduce nutrient enrichment;
- Setting effluent temperature limits to protect fish-bearing waters;
- Setting discharge limits for chemical oxygen demand (COD); and

• Setting pH range limits (ECCC, 2017).

The PPER are also being updated because the pulp and paper industry is diversifying to include bioproducts (e.g. bio-fuels, bio-chemicals, and nanomaterials derived from wood) and the PPER only apply to traditional pulp and paper products. Stand-alone bio-product facilities would instead be subject to the *Fisheries Act*, which could create regulatory uncertainty in the industry (ECCC, 2017). Proposed updates to the PPER to manage bio-product impacts to the environment include setting limits for new deleterious substances (e.g. nitrogen and phosphorus) and lowering BOD and SS limits (ECCC, 2017).

Recommendation 3.1: Environment and Climate Change Canada has proposed updates to the PPER, to account for changes in the pulp and paper industry, as well as to address findings from EEM studies indicating that the PPER do not adequately protect fish, fish habitat, and the environment (ECCC, 2017). NPNC must address whether or not the effluent from the Project will meet the requirements of the proposed updates to the PPER.

Issue 3.2: It is unclear in the EA document if the proposed ETF plant design using BAS[™] technology will be able to meet more stringent discharge regulations being considered in proposed revisions to the *Pulp and Paper Effluent Regulations* which have a target publication date of 2021. Changes being considered in the revised PPER include reductions to current BOD and SS discharge limits in addition to setting allowable discharge limits for phosphorus, nitrogen and chemical oxygen demand (COD) that are not within the current PPER regulation.

The EA outlined that visits to two pulp mills in Sweden that operate Veola BAS[™] wastewater treatment plants "confirmed that the proposed Veolia BAS[™] treatment system will provide the required treatment needs for NPNS to meet current and anticipated future regulations." (Section 4.2.1, p.29). No further information was provided in terms of effluent quality at these mills, or regulatory requirements for discharge water quality at these locations.

In Section 5.2.2, p.40, it is stated *"The ETF is designed to treat the NPNS effluent to meet the Pulp and Paper Effluent Regulations before entering the transmission pipeline and exiting NPNS property."* No reference is made here to potentially more stringent water quality objectives that will have to be met under a revised PPER in 2021.

Recommendation 3.2: More information should be provided on the data collected in the lab trails conducted in Fall 2018 on the NPNS effluent and site visits to the two Kraft mills in Sweden using BAS[™] technology in terms of specific water quality data (BOD, TSS, P, N & COD) and relevant regulations (current and proposed).

Issue 3.3: The proposed ETF with BAS[™] technology is outlined in the EA to be able to "provide a more reliable facility by protecting the AS system from upset conditions, reduce nutrient consumption, and allow for low effluent total phosphorus (TP) and total nitrogen (TN), and improve the AS effluent sludge settling characteristics." (Section 5.2.2.1, p.40). There is no consideration given within the treatment technology assessment and selection related to the non-biodegradable organic fraction within the pulp mill effluent that would be tied to COD discharge limits that may be proposed in modernized PPER.

Recommendation 3.3: Consideration of the non-biodegradable organic fraction within the effluent should be given, with more specific information on components in effluent that contribute to non-biodegradable fraction of COD, and any other efforts that could be considered in the pulp mill process design to lower COD in the mill effluent prior to biological wastewater treatment.

Issue 3.4: There is no information provided in the EA regarding expectant metal concentrations in the AST effluent. There is metal data provided in Appendix M4 on samples collected in December 2018 and analysis done by Maxxam Laboratories. However, each water quality test report is tied to a sample ID placed by analytical lab; there is no information provided on where these samples were taken.

Recommendation 3.4: More information needs to be provided on metal concentrations in the current ASB effluent (Point C) and metal concentrations expected to be found in the effluent of the proposed ETF.

Issue 3.5: Within the section on Accidents, Malfunctions and Unplanned Events (Section 10), mitigation strategies are proposed that would prevent accidental release of off-specification effluent to the receiving environment. Focus of mitigation would be on identification of potential deviation from standard quality of the mill effluent into the ETF. Daily monitoring of key performance indicators of the ETF is also highlighted to provide response and management to changes of the influent to the ETF.

Recommendation 3.5: More detail should be supplied on (1) what "key performance indicators" will be monitored on daily basis, and (2) what monitoring/testing will be conducted on the influent into the ETF; specifically, what water quality and/or operational parameters will be part of this monitoring/testing framework.

Issue 3.6: Historical effluent impacts from the Boat Harbour Treatment Facility, have been described in the Environmental Effects Monitoring (EEM) Cycle 7 Interpretive Report (Ecometrix, 2016). It is understood that the new treatment facility process differs from that of the Boat Harbour Facility. However, it is unclear if NPNS has assessed the potential (if any) for similar ecological impacts to occur from the proposed treatment facility.

Recommendation 3.6: Historical impacts of the Boat Harbour Treatment Facility are of major concern. NPNS must clearly outline how the proposed effluent treatment facility will be designed and operated in a way that will mitigate the potential for similar environmental impacts to occur.

3.2 Effluent Modelling

3.2.1 Summary of EA Content

The EA document does not convey a description of the effluent modelling methodologies or studies through the main text. The effluent modelling work is referred to in the text in very few sections and for the most part often referred to as Appendix E. This Summary of EA Content section provides the limited EA content main text related to the effluent modelling. The effluent modelling studies for Northern Pulp

Effluent Treatment Facility Replacement Project (i.e., Preliminary Receiving Water Study [Stantec 2017] and the Addendum Receiving Water Study [Stantec 2018]) were reprinted as Appendix E3 and Appendix E1 respectively in the whole EA document.

What is known from the effluent modelling work in the entire main text is mostly contained in the Executive Summary. "Water quality has been assessed through modelling of the treated effluent discharge. Through the analysis it has been determined that under 'worst case' conditions water quality at the end of the mixing zone for the three-port diffuser will reach ambient conditions within less than 2 m from the diffuser in terms of total nitrogen, total phosphorous, TSS, DO, pH, and salinity. Colour will return to baseline conditions within 5 m of the diffuser. Temperature will be within 0.1 °C of background at the end of the 100-m mixing zone." The same text is reprinted in Response to Key Issues identified Section 6.7, Table 6.7-1, 9th page.

The Effluent Quality section (5.2.2.9) briefly mentions that a maximum rate of 85,000 m³/day was used in the analysis of effluent plume dispersion, representing a worst-case scenario. The annual average flow is predicted to be 63,600 m³/day. Table 5.2-1 provides the anticipated daily maximum effluent quality and is reprinted from Appendix E3. (The same table is repeated as Table 5.6-1).

Also, the Outfall and Diffuser section (5.2.4) briefly mentions that the "diffuser pipe will be 50 m long, with three outlets ('port') spaced 25 m apart. Each port will be 0.3 m diameter connected to a 1.0 m tall riser pipe with an elastometric duckbill check valve opening at the end. The outfall will be capable of conveying discharge up to 85,000 m³." (Note: m³ is in fact m³/day). It is reported that "The spacing and sizing of ports for the diffuser will achieve an approximate 144:1 dilution ratio". It does not say that the 144:1 dilution ratio is at a 100 m distance from the diffuser (important modelling constrain and CCME requirement). Overall, there was no mention that the above engineering/marine sciences, in regard to the outfall diffuser, was calculated from the effluent modelling studies presented in Appendix E.

The Valued Environmental Component (VEC); Harbour Physical Environment, Water Quality and Sediment Quality section (7.2) is presented in Table 7.4-1, which is of interest to regulatory agencies, the public, stakeholders and First Nations. Also, it is noted that no field work was conducted in this study and that all the information used for this VEC (and the effluent modelling work) was derived from the available literature and other studies. Therefore, all the information is from different perspectives, locations, years, seasons, months, etc.

In the Harbour Physical Environment, Water Quality and Sediment Quality section (8.11), potential effects are provided with an overview of existing environmental conditions in the Northumberland Strait and Caribou Harbour (the location of the effluent outfall), as well as Pictou Harbour. The latter location is used for its existing studies on water quality "in the absence of water quality data for Caribou Harbour" (section 8.11.1). Effluent modelling results are presented in the Characterization of Residual Effects section (8.11.3.3), under Operation and Maintenance (Page 350). The text in this section is repeated from the Executive Summary paragraph mentioned above. It concludes that "Any effects due to the discharge of treated effluent would be localized at the diffuser as the three-port diffuser and the high currents present in Northumberland Strait will aid in dispersion of treated effluent. Thus, significant

residual effects to water quality or sediment quality ... are not likely." While these conclusions are based on the CORMIX modelling for near- and far-fields, it is not mentioned other than referring to Appendix E. The same applies for the Mike 21 far-field modelling results, which are the cumulative effects after a one-month simulation period of effluent discharge from the outfall location CH-B off Caribou Point. However, "results indicate that there are few traces of relatively high diluted effluent after a period of 30 days." The last paragraph reads "The modelling of the plume dispersion used very conservative assumptions, including maximum daily effluent flow rate for 30 days, summer conditions with lower wind speeds, waves and warmer ambient temperatures that are not favourable for plume mixing, and no decay of effluent quality, which represent an exaggerated condition where normally some decay is expected to occur."

Under the Follow-up and Monitoring section (8.11.5), it is noted that NPNS will conduct an EEM program for future effluent outfall in Caribou Harbour and is referenced to Appendix G only.

In brief, the above paragraphs are the extent of the EA main text content regarding effluent modelling, with annotations.

3.2.2 Evaluation & Recommendations

Issue 3.7: Appendices E1, E3, G and H, which relate to effluent modelling are lacking integration with the EA main document. The content of the EA main document is difficult to accept because of the absence of this important information. Additionally, reference to this information are few to none. This is apparent from the Summary of EA Content provided above.

Recommendation 3.7: Summary information should be provided in the main EA text on both the Preliminary Receiving Water Study and the Addendum Receiving Water Study. This information should be tied directly with the information provided in the main EA text. How Mike 21 and Cormix models were used should be clearly stated in the main EA text.

Issue 3.8: There is a lack of field work, particularly in obtaining new water quality data and a field verification of water column non-stratification in winter and summer, as input to customize the hydrodynamic models (Mike 21 and CORMIX) for the CH-B location of the future effluent outfall. It is understood that the modelling aspect was performed with considerable professional judgment. However, the use of the water quality information available from Pictou Harbour (taken from several sources published in different years and from different locations), as a proxy to the Caribou Harbour data, brings considerable doubt to the validity of the studies and main EA text (e.g., Table 5.2-1 or 5.6-1). To have a so-called "conservative approach" is important, nonetheless a reliable and convincing data set on water quality for the study is essential.

Recommendation 3.8: NPNS must rovide a water quality study for the CH-A and CH-B locations and other related areas, including Caribou Harbour and the surroundings of Pictou Island based on numerous sampling stations. As part of this study, one or two reference areas should be considered with several sampling stations.

Issue 3.9: In view of the issues above (Issues 1 and 2), there is no mention in the EA main text that future field work and data collection will be performed to verify the hydrodynamic modelling results of the effluent mixing and dispersion. Under the Follow-up and Monitoring section (8.11.5), it is only noted that NPNS will conduct an EEM program at the effluent outfall diffuser, with reference to Appendix G. Once again, the main text does not convey a brief description of what the follow-up and monitoring entails. It entails a full EEM characterization of effluent plume which will be performed using the CORMIX model during summer and winter conditions, flood and ebb currents and slack tides, with field confirmation using Rhodamine WT. It is of great interest to regulatory agencies, the public, stakeholders and Indigenous Communities to be aware of the up-coming work. In addition, NPNS states that biological monitoring will be performed to include water and sediment quality sampling, as well as benthic invertebrate community and fish population sampling to assess conditions and health over time.

Recommendation 3.9: Provide a brief description in Section 8.11.5 of what the Follow-up and Monitoring Program entails.

3.3 Marine Fish and Aquatic Habitat

3.3.1 Summary of EA Content

The EA describes marine fish and fish habitat in the context of consideration of the ecological value provided to marine ecosystems, the socio-economic importance of fisheries resources and potential interactions with the Project and project activities on marine fish populations. Marine fish are protected under the federal *Fisheries Act*, which includes provisions to protect the productivity of, and prevent "serious harm" to, commercial, recreational, and Aboriginal (CRA) fisheries.

Marine fish, and their habitat, are closely linked to the surrounding physical environment, as well as water and sediment quality, all of which could be impacted by the proposed Project. The main fisheries of importance, as described in the EA, include lobster, sea scallop, herring and rock crab, among other lesser species fished. The Northumberland Strait is a known migration corridor for many species (Rondeau et al. 2016). Commercially important species known to occur in the marine local assessment area (LAA) include rock crab, lobster, sea scallop, herring, mackerel, and tuna.

American Lobster, *Homarus americanus,* is caught throughout the central and eastern portions of the Northumberland Strait. Lobster habitat overlaps with both the proposed route of the effluent pipeline and the location of the marine outfall. American Lobster stock status reports provided by DFO (2013) in the southern Gulf of St. Lawrence show that the Northumberland Strait is a secluded system based on larval recruitment compared to the rest of the southern Gulf of St. Lawrence. With respect to lobster larval transport, eggs that are released are reliant on the current within the Northumberland Strait for transport and have a period between 3- 12 weeks in which the larvae's destination is a result of the direction of the current (Chasse and Miller, 2010). Lobster larvae are retained in the Northumberland Strait for up to 120 days, with some individuals actually settling west of where they were released rather than east. These locations indicate specific circumstances where there are east-to-west currents, some of which have been known to last days to weeks in duration (Hanson and Comeau 2017). The complexity

of larval transport within the Strait highlights the relationship that exists between the provinces in relation to the lobster fishery.

Herring is caught along the shoreline of New Brunswick and Nova Scotia in the Northumberland Strait,

including the Pictou area. There is overlap with herring fishing and the location of the marine outfall. Concern has also been raised about the effects of the marine effluent pipeline on herring spawning from the commercial fishing industry (PEI Standing Committee on Agriculture and Fisheries, 2018). Herring stocks are currently of concern to DFO, and attempts are being made to manage this fishery to avoid becoming at risk in the area (PEI Standing Committee on Agriculture and Fisheries, 2018).

Marine fish can be affected by activities and components of the Project during construction, operation and maintenance phases. The Project has the potential to impact marine fish populations and fish habitat (e.g., adult fish, juveniles, eggs and larvae, invertebrates and marine plants) directly through injury and mortality, or indirectly through the alteration or destruction of their habitat. The current environmental assessment of marine fish is focused on changes in marine fish populations, which includes any physical injury or mortality on fish that is attributable to the Project, and any destruction or alteration of habitat from disturbance of the marine environment.

The EA states that project-related construction, operation and maintenance activities may result in adverse environmental effects such as changes to marine fish habitat and fish populations in the PFA. The proponent claims that it is not anticipated that changes would extend beyond the PFA and that any changes in fish habitat would persist only over the life of the Project and not beyond. The potential change in fish populations is attributable to direct and indirect disturbance/change of habitat and increased mortality risk.

3.3.2 Evaluation & Recommendations

Issue 3.10: The *Fisheries Act* focuses on protecting the productivity of CRA fisheries including a prohibition against causing "serious harm" to fish that are part of or support a Commercial, Recreational, Aboriginal (CRA) fishery (Section 35 of the *Fisheries Act*) and proponents of projects that cause serious harm to fish are required to offset that harm to maintain and enhance the productivity of the fishery. The deposition of a deleterious substance is also prohibited under Section 36(3) of the *Fisheries Act*.

Overall, the EA approaches the assessment of impacts to fish and fish habitat with very limited analysis and examines project activities in the context of "Serious Harm" as described in the Fisheries Act, as opposed to going beyond the limited provisions of the current version of the Fisheries Act. The provision of Serious Harm has been widely regarded as providing limited protection to fish habitat and does not account for all impacts to fish or fish habitat.

Recommendation 3.10: In the interest of assessing the impacts to fish with the highest level of scrutiny and precaution, in our professional opinion, it is recommended that the Proponent should approach the EA with an analysis that goes beyond the provision of Serious Harm to a

shift in focus on avoiding harmful alteration, disruption or destruction (HADD) of fish and fish habitat. This approach is being contemplated proposed *Fisheries Act* amendments under Bill C-68. Given the high level of concern from fisheries groups regarding harmful alteration, disruption or destruction (HADD) of fish and fish habitat of the Northumberland Strait, and the potential adverse effects of the Project, NPNS must assess the proposed activities and design of the Project in the context of HADD avoidance. This approach enhances the measures described within the EA.

Issue 3.11: Section 5.2.3.1 – Land-based Pipeline Portion: The land-based pipeline portion extending from NPNS property to the edge of shore at Caribou Harbour will be approximately 11.4 km in length. The pipeline will be buried for the majority of the route. Based on the proposed design, there will be one area where the pipeline will be exposed and will cross the spillway of the Pictou Causeway, where it will be suspended and attached to the exterior of the bridge due to limited roadway width. The exposed area will be protected from damage by existing guide rails.

The EA does not describe the protections or safeguards that will go into an aerial or exposed stretch of pipeline along the causeway. It does not appear that NPNS has considered the impacts of effluent release spills that do not reach the diffuser. Very limited information is provided in terms of spill response or emergency planning. Should a spill event occur at the aerial location, effluent could be released into the harbour prior to reaching the diffuser and could cause adverse impacts to fish and fish habitat.

Recommendation 3.11: NPNS needs to provide more detail on spill response and safeguards against potential accidents or malfunctions along the terrestrial portion of the pipeline. Without this information, it is unclear how the Minister can make an informed decision regarding whether adverse effects or significant environmental effects may be caused by the undertaking and whether these effects can be mitigated.

Issue 3.12: The EA states that a significant adverse residual environmental effect on marine fish and fish habitat is one where project related activities cause a significant decline in abundance or change in distribution of a marine fish population within the Northumberland Strait. One such change would be that natural recruitment may not re-establish the population to its original level within one generation. However, NPNS also states that no field work was conducted as part of this EA. Without understanding the current larval lobster population, there could be five to seven years of impacts that would go undetected until the current cohort reaches maturity.

Recommendation 3.12: In our professional opinion, A comprehensive multi-year baseline study on all marine species present within the Northumberland Strait must be completed in order to understand potential adverse impacts that may result from project activities. Robust studies are required to better understand each species, and the potential impacts the Project could have on each. This type of baseline study is the foundation of an EA, especially one focused on a project that has the potential to cause serious environmental impacts.

Issue 3.13: The EA states that the main commercial, recreational and aboriginal fisheries are lobster, sea scallop, herring, mackerel and tuna. Beyond those species identified in the EA, the Northern Pulp EA

failed to mention Atlantic halibut, soft shell crab, American eel, gaspereau and silver sides. A complete list of species fished should have been composed with actual field-based studies and research concluded on their tolerance ranges, sensitivities and how different contaminants in the effluent could negatively affect that species. Each individual species has a different mechanism for expelling toxins from their body, thus comparing one species to another does not provide and accurate assessment of impacts.

Recommendation 3.13: In our professional opinion, a more detailed environmental assessment that considers all potential fisheries in the Northumberland Strait needs to be completed to adequately assess project impacts. The EA should consider every species fished commercially in the area and should look at sensitivities of all of those fish to changes in water quality and negative health effects of contaminants

Issue 3.14: Section 5.3.1 – Construction Phase: The EA states that throughout project construction, environmental monitors will enforce construction specifications and site-specific environmental mitigation measures that are proposed for the Project's Environmental Management Plan (EMP). The EA states that a series of plans and guidance documents such as an Waste Management Plan (WMP), an Environmental Protection Plan (EPP), and an Emergency Response and Contingency Plan (ERCP) will be incorporated into the EMP. Applicable best practices, restrictions and details from the EMP will be included in the construction drawings so that construction methodology is in compliance with the EMP. The Proponent has not adequately addressed many construction-related issues in the EA that may have significant consequence to the aquatic environment. A robust Environmental Protection Plan will be imperative to minimize and address an impacts from construction.

Recommendation 3.14: The Environmental Management Plan and the Environmental Protection Plan must be completed and circulated for review and consultation with stakeholders prior to the Project being approved. The Project should not be approved until all stakeholders have been consulted on all environmental protection measures within the Environmental Management Plan.

Issue 3.15: Section 5.3.1 – Construction Phase: As part of construction of the proposed Project, the effluent pipeline will "cross" watercourses and wetlands. The proposed Project does not intend to include in-watercourse or in-wetland crossings. Rather, at potential "crossing" locations of watercourses or wetlands, those sensitive environments will be avoided, where technically feasible, by adjusting the alignment toward the center of the road. In some cases, an alternate approach may be used to go under the watercourse/wetland. There are a number of freshwater fish species that occupy or use the watercourses along the pipeline route. Atlantic salmon, spawn in a number of the watercourse crossings along the terrestrial portion of the pipeline. The EA states that they will adjust the alignment of the pipe to "the centre of the road" to avoid instream work. This plan is not clear in the drawings provided within the EA Registration documents. The construction of the pipe over and around these watercourses is of major concern and must avoid disturbance and/or disruption of fish life cycle.

Recommendation 3.15: The proponent must provide more detail on what is meant by moving the alignment to the centre of the road, and on which watercourses, in particular, they intend to carry this out.

Issue 3.16: Section 5.3.1 – Construction Phase: For watercourse crossings along the pipeline route, the option of using a Horizontal Directional Drill (HDD) is proposed to avoid in-water works. It is stated in the EA that the technical feasibility of an HDD installation is determined by the distance to be drilled, the diameter of the pipeline, and the subsurface conditions. However, it is also stated in the EA, that geotechnical information has not be gathered in order to determine whether HDD is feasible at the various crossing locations. Inconsistent bedrock and overburden conditions present impediments to the use of HDD technology. Without a comprehensive geotechnical assessment of the crossing locations that are proposed to be drilled, issues can arise when carrying out the HDD. In particular, without understanding the substrate that is to be drilled, the possibility of an inadvertent release of drilling fluid (frac) may occur. Fracs are highly impactful to fish and fish habitat as they may result in the release of large plumes of drilling fluid that can kill fish and can cover or destroy fish habitat both in the watercourse and in the marine environment.

Recommendation 3.16: In our professional opinion, geotechnical assessments must be completed and reviewed by project stakeholders. This information is required before the Minister can make an informed decision on all potential impacts of the Project.

In addition, the Environmental Protection Plan must address prevention and emergency response related to horizontal directional drilling.

Issue 3.17: *Table 8.12-7: Mitigation Measures to Reduce or Avoid a Change in Marine Fish Populations:* There is no description of how negative impacts resulting from the laying of pipe will be mitigated during the Construction Phase. The mitigation tables merely provide standard measures that have no site-specific relevance on minimizing the impacts of pipe construction in open water. The table states that the duration of in-water work will be managed to the shortest time that is practical. The proposed actions are very unclear and do not outline what is actually practical or feasible. The likelihood of impacting benthic species, as well as mobilizing sediment and increasing turbidity, is very high during construction. Its unclear how NPNS plans to mitigate these disturbances to fish habitat.

The EA does not include sufficient analysis of construction methodologies that would reduce the risk to benthic species, as well as fish species in the area. Elevated levels of sediment and turbidity can reduce the productivity of aquatic systems by decreasing primary productivity. Further, levels of suspended sediment have been determined to be acutely lethal to fish ranging in the thousands of mg/l of TSS while sublethal effects begin in the hundreds of mg/l sediment (Birtwell et al. 1999). The construction of the pipe could result in fish mortality if not adequately mitigated. The EA does not provide a detailed plan to minimize impacts of sedimentation to fish and fish habitat.

Recommendation 3.17a: The EA must provide more details on mitigating benthic disturbance and subsequent TSS mobilization during pipe construction in the Northumberland Strait.

Recommendation 3.17b: The EA should examine the possibility of HDD drilling to facilitate the placement of the pipe into the Northumberland straight. HDD could reduce the risks of in-water works that could significantly impact fish and benthic communities.

Issue 3.18: The EA states that routine effluent discharge from the effluent outfall diffuser will cause a project-related change in water quality. The treated effluent will contain water quality parameters of concern including absorbable organic halides (AOX), total nitrogen (TN), total phosphorus (TP), color, biochemical oxygen demand (BOD), total suspended solids (TSS), dissolved oxygen (DO), pH, and water temperature. Potential effects of the effluent, as presented in the EA, could result from an increase in temperature, nutrients (nitrogen and phosphorus), and/or TSS, a change in color, chemical and BOD, DO, and/or pH; and/or a reduction in salinity from the discharge of relatively freshwater effluent into the Northumberland Strait.

The discharge of effluent containing elevated levels of TSS could also cause a change in sediment quality near the diffuser due to settlement of suspended sediment. A change to any of these parameters can have detrimental effects on the fisheries. The EA does not provide a detailed analysis of species-specific limits and tolerances with respect changes in water and sediment quality as a result of effluent discharge.

Further, the Pulp and Paper Effluent Regulations only stipulate the monitoring of a few parameters and are not always protective of the aquatic environment (ECCC, 2017). In fact, Environment and Climate Change Canada is currently reviewing the regulations to address such issues (ECCC, 2017).

Recommendation 3.18a: The EA must outline species-specific limits of tolerance with respect to the above parameters described as well as upper and lower limits for toxins specific to mill effluent. A robust assessment of how changes to the marine environment, and the discharge of effluent contaminants, impact species inhabiting the area must be completed in order to understand impacts of the proposed Project.

Recommendation 3.18b: The proposed changes to the PPER must be considered when addressing the species-specific effects including a quantitative evaluation of the impact of the proposed changes on the assumptions and conclusions of the EA.

Issue 3.19: The description of the existing physical environment conditions of water and sediment quality within the LSA is based on the results of previous research and existing scientific literature and environmental assessments. No field work was conducted as part of this EA Registration. This is a major data gap identified in the EA. It is unclear how potential impacts related to the Project will be characterized without a robust understanding of current baseline conditions.

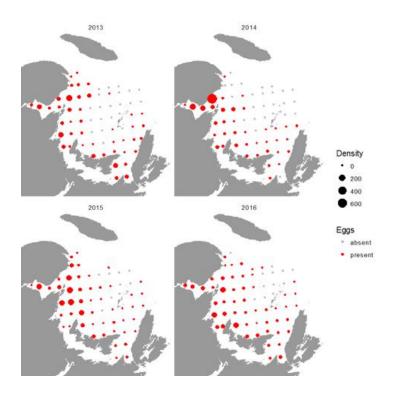
Recommendation 3.19: In our professional opinion, a project of this magnitude warrants comprehensive field work investigations to be completed. NPNS should conduct a comprehensive baseline assessment to characterize current conditions of the marine environment within the project assessment area, including sediment and water quality.

Issue 3.20: Pictou Harbour was used as a proxy for Caribou Harbour with respect to evaluating water quality, in the absence of available water quality data for Caribou Harbour. The EA only provides an overview of water quality sampling in Pictou Harbour in 1990, 1995 and 1998 (Dalziel et al. 1993; JWEL 1996) with no actual current or historical data from the proposed location at Caribou Harbour. The EA relies on data that are roughly 30 years old to make assumptions on the potential impacts to marine life

from the current Project. The EA registration documents lack of representative and current water quality data is a major gap.

Recommendation 3.20: The proponent should collect and analyze current water quality data, from the proposed outfall location, in order for the EA to adequately assess impacts to the water quality from the Project, and to adequately plan for preventing or mitigating those potential impacts.

Issue 3.21: NPNS did not undertake field work to gather relevant data for sediment characterization at the proposed outfall location. NPNS relied, instead, on sediment data that are roughly 30 years old. As well, the EA presents metal concentrations in sediment samples collected in Pictou Harbour in 1993. Without current baseline information to inform the EA, it is not possible to understand the potential impact of the Project on sediment quality. Not having representative and current sediment quality data to inform the EA is considered to be a major data gap in the assessment.


Recommendation 3.21: NPNS must collect current and relevant data on sediment characterization at the proposed outfall location.

Issue 3.22: Section 8.12 Marine Fish and Fish Habitat: Herring stocks are currently of concern to DFO, and attempts are being made to manage this fishery to avoid becoming at risk in the area (PEI Standing Committee on Agriculture and Fisheries 2018). Herring spawn between August and October in the southern Gulf of St. Lawrence, and DFO has identified fall spawning grounds for herring in the eastern Northumberland Strait. Currently, the fall spawning stock is in the critical zone and the spring spawning stock is in the cautious zone (DFO, 2018a). The EA states that concern has been raised about the effects of the effluent on herring spawn, however, the main fisheries in the LAA considered in the assessment are scallop and rock crab. There is no mention of what NPNS is doing to mitigate the potential risks to herring spawn due to the project. In addition, field or lab work has not been completed to address this potential risk and concern.

Recommendation 3.22: Proper research needs to be completed to understand possible effects of the effluent on herring spawn, including sub-lethal effects. A rebuilding plan for herring is currently being developed to ensure the regrowth of the stock, and therefore any potential impacts to herring spawn must be fully considered in the EA.

Issue 3.23: Section 8.12 Marine Fish and Fish Habitat: The EA reports that mackerel is caught along the coast near the LAA, although most fishing occurs in the central and western portions of the Northumberland Strait. There is only one comment about mackerel in the EA, thereby demonstrating a lack of robust analysis regarding impacts. There is no mention of mackerel life stages or occurrence in the LAA. Data shows that the only key spawning area in Canada is the Southern Gulf of St. Lawrence and that surveys conducted on mackerel eggs are present in the East end of the Northumberland Strait (DFO, 2017) (Figure 6).

Figure 6. Distribution of Mackerel Egg (Stages 1 and 5) Densities (n/m2) Measured in Surveys in the Southern Gulf of St. Lawrence from 2013 to 2016 (DFO, 2017)

Recommendation 3.23: Research must to be completed to understand possible sub-lethal effects of the effluent on mackerel eggs. Currently, the stock is in the critical zone (DFO, 2017) and a rebuilding plan is being developed to ensure the regrowth of the stock. The EA must clearly assess how potential impacts from the Project could affect stock regrowth.

Issue 3.24: Section 8.12 Marine Fish and Fish Habitat: Table 8.12-6 of the EA lists marine fish Species at Risk and Species of Conservation Concern with potential to occur in the LAA. This EA table lists American eel, American plaice, Atlantic bluefin tuna, Atlantic cod, Atlantic salmon, lumpfish, porbeagle, spiny dogfish, striped bass, and white hake, but does not list Atlantic sturgeon. This is another significant data gap in NPNS EA. There are two species of Atlantic sturgeon in Canada and both are listed as threatened by the Committee on the Status of Endangered Wildlife in Canada (COSEWIC) and are known to exist within the Northumberland Strait (COSEWIC, 2011).

Recommendation 3.24: Atlantic sturgeon must be considered in the assessment, and potential impacts to the species identified. Once again, the Minister must consider '*potential and known adverse effects or environmental effects of the proposed undertaking, including identifying any effects on species at risk, species of conservation concern and their habitat*' (Nova Scotia Environment, 2018).

Issue 3.25: The Gulf of St. Lawrence (GSL) American lobster is of high value in the region, with 33,000 mt of lobster worth \$445 million landed in 2016, and abundance indices still increasing throughout the Gulf (DFO, 2019a). The value of American lobster is not mentioned in the environmental assessment

submission. Lobster biomass is increasing as efforts have been taken toward voluntary management changes. It should also be noted that conditions like water temperature can impact the distribution of lobster and their catches (DFO, 2013). This is extremely important to the fishers in the area of the outfall considering the temperature being released will be above the average background water temperature when released to the Strait.

At this time, there have been no field trials or lab tests by NPNS to prove that they will not be jeopardizing the lobster fishery. Considering the significant value of lobster in the Gulf (worth \$445 million in 2016), proper scientific research needs to be conducted on the potential impacts to the lobster and lobster fishery. The EA relies on desk top research and literature based on dated, 40 year old research.

Recommendation 3.25: As stated in Appendix R of NPNS's EA Registration documents, it is recommended that more research be completed on the effect of the effluent on lobster in each life stage. It is important to highlight that the recommendation given in Appendix R regarding more research on the effect of effluent on lobster must be followed through and completed. It is unclear how the Minister will determine if the following has been addressed in the EA (as outlined in Nova Scotia Environment, 2018), given the lack of a robust consideration of lobster in the assessment:

Issue 3.26: *Section 8.12 Marine Fish and Fish Habitat:* Figure 8.12-5 of the EA presents scallop catch weights from 2010-2014 in the Northumberland Strait, where there is an overlap of the route of the pipeline and at the outfall location. Since 2014, a Scallop Buffer Zone in Scallop Fishing Area (SFA) 24 prevents scallop fishing in this area, except potentially at the location of the outfall. Sea scallops will normally grow in water between 8°C and 18°C; ideal temperature for growth is 13.5°C. Ideal salinity is between 30 to 32 ppt but they can tolerate salinities as low as 25 ppt. Sea scallops are prone to being stressed in environments outside of their normal ranges. They can get stressed at temperatures between 20°C and 23°C and mortality will occur at temperatures of 23.5°C and greater. Water temperatures will be affected by the effluent and will not reach background levels until 100 m from the outfall site. The proposed effluent release will be 26°C in the winter and 37°C in the summer. These temperatures are much higher than mortality-causing temperatures for the sea scallop.

Recommendation 3.26: Detailed field assessment on the sea scallops that inhabit the area near the proposed outfall location must be completed prior to the release of the proposed effluent to ensure there will be no negative effects on the sea scallops. Otherwise, it is unclear how the Minister will be able to determine if adverse effects or significant environmental effects are likely to occur.

Issue 3.27: Section 8.12.2.5: NPNS have not completed any scientific field work or a comprehensive assessment of the impacts of the effluent on lobster larvae. NPNS has merely relied on a literature review (Appendix R), in the EA, to make an assumption on the "limited impacts" to lobster and lobster larvae. Further, the review of scientific literature related to the effect of BKME on American lobster (*Homarus americanus*) is mainly related to a small number of lab studies conducted in the 1960's (Sprague and McLees, 1968a 1968b). The limited literature on the subject, coupled with the lack of field

assessments, or detailed analysis of the impacts, indicates that NPNS is unable to conclude what the potential impacts will be to lobster and lobster larvae. A few studies suggest that sublethal effects of chemicals on lobster energetics may occur under laboratory exposure conditions (i.e., concentrations and duration) considered environmentally relevant, that might not be detected through the standard toxicology approaches (alive/dead animal as the only output measured). These physiological changes could result in great impairment under natural conditions (Sprague and McLees, 1968a 1968b). The information provided in the EA is insufficient to conclude whether or not adverse effects will occur to lobster larvae should the Project proceed.

Recommendation 3.27: Detailed field and lab work must be carried out as part of a comprehensive EA that assesses and quantifies sublethal, chronic and cumulative effects on lobster larvae. The level of stakeholder concern regarding lobsters warrants the need for increased scientific understandings and fulsome assessment of impacts, in order for the Minister to make an informed decision regarding potential impacts of the Project to lobster.

Issue 3.28: NPNS has stated that they have attempted to engage commercial and Pictou Landing First Nation (PLFN) fish harvesters to obtain fisheries data in the area of the marine outfall; however they suggest that there was little interest from the fish harvesters to participate or provide any data. This comment is of concern to local harvesters as they did engage in discussions surrounding fishing grounds and it was made clear to NPNS that if there is water, there is fishing. Harvesters maintain their traditional grounds, but they consistently explore other areas outside as well.

Recommendation 3.28: Individual species cannot be pinpointed to specific locations within the Northumberland Strait. Again, they do have traditional habitat and areas they are commonly found, but individuals are not restricted to these areas only. The ability, and likelihood, of each species to move throughout the Northumberland Strait must be considered and accounted for in a robust environmental assessment.

Issue 3.29: *Section 8.12 Marine Fish and Fish Habitat:* Rock crab is another species of extreme importance in the Northumberland Strait, both for its commercial value and its position in the food chain. According to the DFO, American lobster is largely carnivorous and decapods are the principal prey (57% to 84% of prey biomass), with rock crab being the single most important component of the lobster diet (45% to 78%) (DFO, 2019a). As such, a decline in the rock crab biomass could also be detrimental to the lobster biomass. While the majority of the commercial fishery for rock crab occurs in the central and western portions of the Northumberland Strait, there are areas in the eastern portion where rock crab is harvested, including Caribou Harbour where there is overlap with the proposed marine route of the effluent pipeline. The current EA does not consider how a potential decline in a prey species such as rock crab may have a detrimental impact on other commercially important species like lobster.

Recommendation 3.29: The Northumberland Strait must be also assessed as an interwoven and interdependent ecosystem, not only on an individual species by species basis. NPNS must consider these ecosystem impacts in a more comprehensive and robust environmental assessment. Otherwise, it is unclear how the Minister will be provided with sufficient information to make an informed decision about the likelihood of adverse impacts.

Issue 3.30: Section 8.12.5 Marine fish and fish Habitat Follow-up and Monitoring, Appendix H and G: As stated in the Environmental Effects Monitoring Program Proposed in Appendix H, completed by Ecometrix and according to the PPER, biological field monitoring studies are recommended to consist of evaluations of benthic invertebrate community condition, fish population health, and dioxins and furans levels in fish tissues. For benthic invertebrates and fish health, the requirements to conduct field studies are only conditional on the spatial extent of the effluent plume in the receiving environment:

A study respecting the benthic invertebrate community, if the concentration of effluent in the exposure area is greater than 1% in the area located within 100 m of a point of deposit of the effluent in water.

A study respecting the fish population, if the concentration of effluent in the exposure area is greater than 1% in the area located within 250 m of a point of deposit of the effluent in water.

In the EA. a statement is made that the mill is only required to implement the field survey programs once it has begun to discharge effluent from the new proposed outfall location and that there is no statutory obligation as defined in the PPER to complete field surveys prior to this time.

Recommendation 3.30: Despite the PPER regulations, given the high level of concern expressed by the public and harvesters, a biological monitoring program should be implemented prior to final commissioning of the proposed treatment plant and effluent outfall. The collection of this baseline information will significantly strengthen the interpretive power of the biological monitoring program as a whole. This baseline information will allow the biological monitoring program data to be analysed in a BACI (Before-After-Control-Impact) framework so that potential effluent related effects can be considered both spatially (i.e., exposure vs. reference) and temporally (i.e., pre-discharge vs post-discharge).

Issue 3.31: Section 8.12.5 Marine fish and fish Habitat Follow-up and Monitoring, Appendix H and G: With respect to the scheduling of monitoring, the Benthic Invertebrate Community Assessment and Fish Population Health Assessment are not required through PPER to be completed in a pre-discharge survey. Further, post-discharge surveys are only being recommended to be performed within 24 months of the initiation of discharge from the new outfall location.

Recommendation 3.31: Again, despite the PPER regulations, in our professional opinion, and due to the high level of concern expressed by the public and harvesters, the biological monitoring program should be implemented and remain continuous as soon as effluent is released to the Strait. Considering the level of concern from stakeholders in the region and coupled with the uncertainty of the effluent composition and the limited collection of existing environmental condition data, it is imperative that NPNS implement a robust continual biological monitoring program prior to effluent discharge and that continues through operations.

Issue 3.32: Section 8.12.5 Marine fish and fish Habitat Follow-up and Monitoring; As part of the Pictou Harbour Environmental Effect Monitoring (EEM), sublethal toxicity testing was completed on effluent from the stabilization basin that indicated sea urchin fertilization was affected at stabilization effluent concentrations of greater than 12%. The EA does not mention the results of the EEM or to assess the

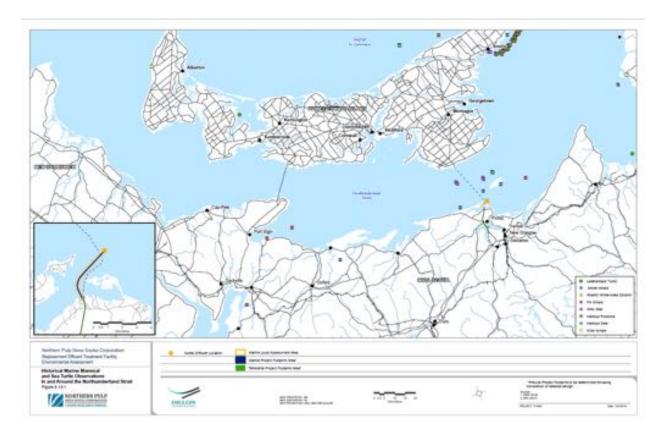
potential impacts of the new Caribou Harbour project in the context of what has occurred at Pictou Harbour over the operational period of the mill.

Acknowledging that NPNS has stated that the new effluent will be "different" than the old Pictou Harbour effluent, it is still in the interest of all stakeholders to assess the proposed Caribou Harbour Project using a higher-level scientific scrutiny, due to the legacy impacts of the mill over time, such as the sublethal impacts discussed in the EEM. Currently the EA is lacking in the assessment of sublethal effects. The results of lethal and sublethal effects tests can not be directly correlated between species, because different marine species exhibit different degrees of sensitivity to pulp effluent (Sprague and McLeese, 1968).

Recommendation 3.32a: The EA must consider both lethal and sublethal effects of the Project and must go beyond the provision of "serious harm" to incorporate how effects, other then direct mortality, could negatively impact the fisheries of the Strait.

Recommendation 3.32b: In addition, analysis and monitoring of lethal and sublethal effects should be carried out independently of one another on locally important species such as lobster, crab, herring and Atlantic salmon.

3.4 Marine Mammals


3.4.1 Summary of EA Content

The NPNS proposed Replacement Effluent Treatment Facility has the potential to adversely affect marine mammals and because of this, they were scoped into the Project consideration through the Marine Mammals, Sea Turtles, and Marine Birds Valued Ecosystem Component (VEC). The spatial boundaries for this VEC include the Marine Project Footprint Area (PFA), which consists of a corridor of approximately 15m-wide and 4.1km-long that begins at the ordinary high-water mark and extends seaward into the Northumberland Strait until the pipelines terminates at the effluent outfall diffuser, and the Marine Local Assessment Area (LAA), which is an approximately 300m-wide and 4.1km-long corridor. The temporal boundaries for this VEC include the construction (estimated to take approximately 21 months following potential EA approval), operation and maintenance (estimated to occur for several decades), and decommissioning phases of the Project.

The description of the existing environment for this VEC was based on the results of previous research and existing scientific literature and environmental assessments, with a significant emphasis on the Environmental Impact Assessment (EIA) for the Prince Edward Island-New Brunswick Cable Interconnection Upgrade Project. For baseline information on marine mammals, in particular, NPNS relies upon data obtained from the Atlantic Canada Conservation Data Centre (ACCDC), Department of Fisheries and Oceans (DFO) and the Ocean Biogeographic Information System (OBIS).

According to the Project EA, the Gulf of St. Lawrence is known to provide habitat for 13 recorded species of cetaceans (e.g. whales and dolphins) and four species of pinnipeds (e.g. seals), ten of which have

been recorded within the Northumberland Strait and the Project LAA. The species of cetaceans known to occur in the Northumberland Strait include Atlantic white-sided dolphins (Gulf of St. Lawrence population), fin whale (Atlantic population), harbour porpoise (Northwest Atlantic population), longfinned pilot whales, minke whales (Atlantic subspecies), sperm whales; and the species of pinnipeds include grey seal, harbour seal (Atlantic subspecies), harp seal, and hooded seal. These species of pinnipeds are determined to occur in the area either frequently or occasionally, whereas most cetaceans are occasional or rare visitors. At-risk species include fin whale, harbour porpoise, and longfinned pilot whale. According to NPNS's EA, North Atlantic Right Whales are not known to occur in the vicinity of the LAA and there is no record of historical observations in the Northumberland Strait, as shown in Figure 7 below.

Figure 7. Map of Historical Marine Mammal and Sea Turtle Observations in and around the Northumberland Strait (Source: NPNS Replacement Effluent Treatment Facility EA Figure 8.13-1)

Despite, NPNS's assertion that North Atlantic Right Whales are highly unlikely to be present in the LAA, potential impacts to this species are discussed briefly throughout the effects assessment and considered to a certain extent in mitigation.

NPNS has determined that there is the potential for Project-related activities to result in a change in risk of injury or mortality and a change in habitat quality and use during both the construction and operations and maintenance phases of the Project. Specifically, marine mammals are at risk of injury of mortality due to potential collisions with Project vessels and equipment, potential entanglement in

anchor lines, and potential physical damage due to harmful levels of underwater sound and vibration during marine blasting. Marine mammals could also experience changes in habitat quality and use due to sediment resuspension from seabed disturbance during pipeline trenching and installation, underwater acoustic emissions, and changes in water quality caused by routine effluent discharge from the effluent outfall diffuser.

In order to mitigate these potential adverse effects, NPNS intends to undertake a number of measures including: requiring project vessels to operate a slow maneuvering speeds (e.g. maximum of 10 knots), employing marine mammal observers (MMOs) to monitor and report on marine mammals during marine blasting operations, requiring project vessels to adhere to the general guidelines for vessels operating near marine mammals as outlined in DFO's 2018 Notice to Mariners, minimizing risk of anchor line entanglement by promptly removing them after use and keeping them as taught as possible during use, maintaining buffer distances in the event marine mammals are present near operating Project vessels, and treating effluent in compliance with regulatory guidelines for effluent discharge quality.

Considering the implementation of these mitigation measures, NPNS has determined that significant adverse residual environmental effects on marine mammals are not anticipated.

North Atlantic Right Whale

There was no targeted assessment of the potential adverse effects of the Project on North Atlantic Right Whales, which are listed as endangered by both SARA (Schedule 1) and COSEWIC. They occur in the northwest Atlantic, ranging from Florida to Newfoundland and in the Gulf of St. Lawrence (COSEWIC, 2013). Their wintering and calving grounds are generally located off the coast of Florida and Georgia, however, not all individuals will occupy these areas and the whereabouts of adult males, in particular, is largely unknown (COSEWIC, 2013). Researchers have also recently found a possible breeding ground located in the middle of the Gulf of Maine (COSEWIC, 2013). Female whales will use calving grounds during the early winter then migrate north in the winter and spring to feed in the Great South Channel and Massachusetts Bay areas. During the summer and fall, North Atlantic Right Whales can be found congregating and feeding in the lower Bay of Fundy and in the Roseway Basin on the western Scotian Shelf. However, since 2010 there has been a noticeable shift in the distribution of North Atlantic Right Whales, particularly in their summer foraging range which has led to increasing uncertainty regarding their use of north Atlantic waters (Brillant et al., 2015; Davis et al., 2016; Plourde et al., 2016; Meyer-Gutbrod & Greene, 2018). These changes in distribution are thought to be driven by the changing abundance of North Atlantic Right Whales' primary prey species, Calanus finmarchius, which have been shown to be declining in the Bay of Fundy and Roseway Basin, but present in the Gulf of St. Lawrence (Plourde et al., 2016).

The primary threats facing this species are ship strikes and entanglement in fishing gear, both of which have contributed to its endangered status and limited population recovery (COSEWIC, 2013). Most notably, an unusual mortality event was declared in 2017 due to the discovery of 12 North Atlantic Right Whale carcasses in the Gulf of St. Lawrence and 5 near the Gulf of Maine. In most of these cases, causes of death we determined to be blunt force trauma due to ship strikes or entanglement in snow crab

fishing gear (Daoust et al., 2017). Since this time, DFO has worked with industries (e.g. fishing, shipping) to drastically change its management measures to protect North Atlantic Right Whales. Mitigation measures that have been implemented include mandatory vessel speed restrictions, snow crab and lobster fishing closures, and experimentation with new fishing gear technologies (DFO, 2018c; DFO, 2018d).

Underwater noise from increased ship traffic, wind or tidal power projects, and offshore oil and gas exploration also threatens North Atlantic Right Whales by causing acoustic disturbance (COSEWIC, 2013), affecting feeding, migration, care for calves and defense against threats (e.g. vessel traffic). Finally, activities that reduce the quantity or quality of prey (e.g. copepods) are also known threats to the North Atlantic Right Whale habitat.

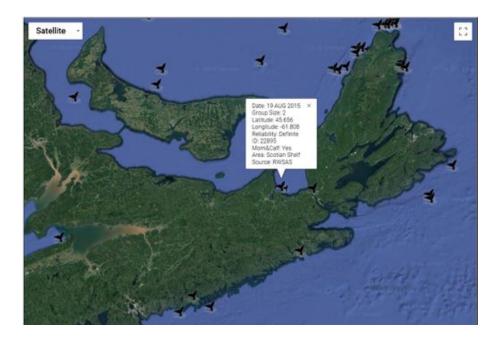
3.4.2 Evaluation & Recommendations

Issue 3.33: General Comment on EA Scope: An ecological risk assessment (ERA) should be completed to quantify potential risks to the health of marine mammals. This requires detailed information on the chemical characterization of the mill effluent including which chemical parameters are present in the effluent and at what concentrations. If chemicals of potential concern to environmental health are identified as being bioaccumulative, this must be fully considered in the assessment of risks to marine mammals. In particular, we are concerned about North Atlantic Right Whale exposure to contaminants, including but not limited to organochlorines that have the potential to be found in pulp effluent, through vector prey species such as *Calanus finmarchius*. Exposure to bioaccumulating chemicals may influence reproduction and population growth (Weisbrod et al., 2000; Durbin et al., 2002) and exacerbate their current endangered status.

Recommendation 3.33: An ERA is required that considers ecological receptors, including marine mammals such as North Atlantic Right Whales, who may be exposed to chemicals of potential concern from the proposed Project.

Issue 3.34: EA Section Reference: EA Section 8.13.2.1 (p. 400): The description of the existing environment for marine mammals, which forms the basis of the Project effects assessment, is limited in many ways. We are therefore concerned that NPNS's conclusion that the Project is unlikely to cause adverse effects on North Atlantic Right Whales (*Eubalaena glacialis*) is inaccurate. Specifically, there is a lack of transparency and certainty regarding baseline data used, a lack of field studies undertaken, and growing uncertainty regarding the distribution of North Atlantic Right Whales in their summer foraging range.

First, there is a lack of transparency and certainty regarding the baseline data that was considered by NPNS. In Section 8.13.2.1, NPNS states that North Atlantic Right Whales are not known to occur in the vicinity of the LAA and that there have been no historical observations recorded in the Northumberland Strait, citing data obtained from the Atlantic Canada Data Conservation Centre (ACCDC) as of 2018, the Department of Fisheries and Oceans (DFO) as of 2017, and the Ocean Biogeographic Information System (OBIS) as of 2018. However, only the raw data from the ACCDC, and not DFO or OBIS, is provided in EA


Appendices for verification. Further, it is unclear whether these data were obtained from systematic surveys or represent incidental observation records.

Based on our own review of existing marine mammal data from the National Oceanographic and Atmospheric Association's (NOAA) Right Whale Sighting Advisory System, it is clear that NARW have been reported in the Northumberland Strait in the past, most recently in 2015 when a female and her calf were spotted in St. George's Bay (Figure 8).

Second, no field work was conducted as part of this EA registration for the marine mammals, sea turtles, and marine birds VEC. Instead, this section relied substantially on the EIA registration for the PEI-NB Cable interconnection upgrade project.

Third, there is growing uncertainty regarding the distribution of North Atlantic Right Whales in their summer foraging range; it is therefore inappropriate to determine they will not occur in the Northumberland Strait. Since 2010, there has been a noticeable shift in the distribution of North Atlantic Right Whales, particularly in their summer foraging range, which has created uncertainty regarding their use and occupancy of habitat in the north Atlantic (Brillant et al., 2015; Davis et al., 2016; Plourde et al., 2016; Meyer-Gutbrod & Greene, 2017). For example, approximately one third of the North Atlantic Right Whale population is not observed in its traditional or known summering habitats, and in some years, they will abandon these areas altogether (Plourde et al., 2016). Additionally, survey efforts for North Atlantic Right Whales within their summering ranges are concentrated around known critical foraging habitats such as the Bay of Fundy and Roseway Basin (Brillant et al., 2015), despite the fact that in recent years they have been concentrating in the Gulf of St. Lawrence (Plourde et al., 2016; Meyer-Gutbrod & Greene, 2018; Meyer-Gutbrod et al., 2018). This northward shift is distribution is driven in part by the changing relative abundance of their primary prey species *Calanus finmarchius*, and recent studies have shown potential new suitable foraging habitat in areas of the southern Gulf of St. Lawrence (Plourde et al., 2016), which is in close proximity to the Northumberland Strait.

Figure 8. Sighting of North Atlantic Right Whale in the Northumberland Strait in 2015 along with Calf (Source: https://www.nefsc.noaa.gov/psb/surveys/MapperiframeWithText.html)

Recommendation 3.34: The assessment of project effects on marine mammals, sea turtles, and marine birds VEC (Section 8.13) is considered to be incomplete and underscores the need for NPNS to conduct field studies for this Project, especially given growing uncertainty regarding the distribution of North Atlantic Right Whales in their summer foraging range.

Issue 3.35: EA Section Reference: EA Section 8.13.3.2 (p. 417-420): Section 8.13.3.2 does not provide enough information on the methodologies that will be employed by Marine Mammal Observers (MMOs). It is assumed that visual surveying methodologies will be employed based on the specification that MMOs will be equipped with 7x35-power binoculars, but no further details are provided. Visual surveys are known to be limited by a number of factors including daylight, weather conditions, and the availability of suitable monitoring platforms at appropriate times and appropriate locations (Brillant et al., 2015). By contrast, other methods such as passive acoustic monitoring (PAM) can provide continuous coverage of areas that are otherwise difficult to observe visually. Additionally, a rationale was not provided as to why marine mammal monitoring would likely only be undertaken during blasting activities and not all project vessel traffic.

There is also very little information on MMOs reporting requirements and the circumstances under which marine mammal monitoring will be required.

Without these further details on marine mammal monitoring, it is not clear that measures to mitigate the potential adverse effects of the Project on North Atlantic Right Whales will actually be effective.

Recommendation 3.35a: NPNS must provide more detailed information on visual surveying methods and consider completing these in combination with other marine mammal monitoring

methods such as the deployment of passive acoustic monitors or aerial (helicopter or drone) surveys.

Recommendation 3.35b: NPNS must provide more information on MMO monitoring requirements, including information on reporting intervals, accessibility of reports to stakeholders, and whether reporting will trigger any adaptive management measures.

Recommendation 3.35c: NPNS should also consider requiring marine mammal monitoring during all project activities that require vessel travel.

Issue 3.36: EA Section Reference: EA Section 5.3 (p. 49-81); EA Appendix F (p. 1-91); EA Section 8.13.3 (p. 415-424) NPNS acknowledges that marine mammals could be adversely affected by a project-related change in risk of injury or mortality by way of potential collisions with project vessels and equipment (Sect. 8.13.3.1, p. 415). However, there is very little information on the vessel traffic that will be required to complete Project activities (e.g. marine portion of pipeline installation, marine surveying for pipeline route planning, marine outfall construction, pipeline maintenance and inspection, etc.), specifically regarding vessel types, sizes, routes, speeds, and schedules. NPNS does state that "project vessels used for construction and for potential maintenance and repairs during operation will be relatively small in size and draft and will not be present in large numbers" (Sect. 8.13.3.1, p. 417), and that 'Project vessels may operate up to 24 hours a day, 7 days a week during construction" (Sect. 8.13.3.3, p. 420), but this information is not clearly summarized in Section 5.3 or Appendix F in detailed or definitive terms. Subsequently, it is unclear how NPNS came to the conclusion that Project vessels are unlikely to harm North Atlantic Right Whales without providing clear, detailed information on vessel activity.

Additionally, NPNS intends to prevent injury or harm to marine mammals by adhering to general guidelines for vessels operating near marine mammals, as specified in section A2 of the annual edition of Notices to Mariners (DFO, 2018d). This includes measures such as approaching areas of known or suspected wildlife activity with extreme caution, reducing vessel speeds and avoiding approaches within certain distances (e.g. 400m and 100m). However, NPNS has not provided any information on how they intend to detect marine mammal while navigating Project vessels and has stated that they will likely only employ MMOs during blasting activities. This is an information gap that must be addressed.

Recommendation 3.36a: More detailed and definitive information on the vessel traffic (including vessel type, size, route, speed, schedules) that will be required to complete Project activities must be provided and considered in the EA, given potential impacts to marine mammals.

Recommendation 3.36b: NPNS should ensure that observers are present on all Project vessels to identify the presence and location of marine mammals and to ensure appropriate mitigation measures outlined in EA Section 8.13.3.2 are adequately triggered and implemented.

3.5 Cumulative Effects

3.5.1 Summary of EA Content

Cumulative environmental effects are described in the EA as residual environmental effects that are likely to result from a project in combination with the environmental effects of other projects or activities that have been or will be carried out and also referred to as past, present, and reasonably foreseeable future projects or activities (CEA Agency 2014).

The EA claims that the existing environment conditions described in the report reflect the cumulative environmental effects of past and present project activities; however, there is also a need to assess the potential for additional project-related cumulative environmental effects, particularly with respect to potential interactions with other pending projects that are in advanced planning stages, or existing ones that may be subject to modifications or expansion.

The cumulative environmental effects assessment methodology undertaken for the Project is only a high-level approach which is said to have been recommended by the Canadian Environmental Assessment Agency's (CEA Agency) publication titled "Assessing Cumulative Environmental Effects under the *Canadian Environmental Assessment Act, 2012* – Interim Technical Guidance" (CEA Agency 2018).

According to CEAA's guidance document, a cumulative environmental effects assessment should accomplish the following:

- determine if the Project will have a residual environmental effect on a valued component;
- determine if the incremental effect acts cumulatively with the effects of other past, existing, or future actions; and
- determine if, after mitigation, the combined environmental effects may cause a significant change in the VEC.

NPNS acknowledges that there is a high level of existing disturbance in the Northumberland Strait associated with the Northumberland Ferries service, commercial shipping, and commercial fishing in Caribou Harbour and the Northumberland Strait, but that there are few other likely projects or activities in the marine portion of the RAA.

Key cumulative activities that may adversely affect a number of important marine fish and mammal species include increased acoustic emissions, impacts to habitat associated with future dredging activities in Caribou Harbour in support of Transport Canada shipping lane maintenance, potential collisions with other vessels, pollution from bilge water and the accidental release of hydrocarbons.

However, it was determined that most marine fish and mammals are likely to avoid construction activities, and the PFA overall, due to noise and activities. Subsequently, it was predicted that the

residual cumulative effects on marine mammals are not likely to be substantive overall, and that they are not anticipated to extend beyond the PFA.

3.5.2 Evaluation & Recommendations

Issue 3.37: The Gulf of St. Lawrence has been identified as an area of rapid coastal deoxygenation by Claret, M. et. al (2018). Their analysis notes increases in surface water temperature and salinity, as well as decreases in oxygen saturation. This must be accounted for the in the assessment of cumulative effects of the Project, within the EA.

Recommendation 3.37: The EA must assess cumulative effects of the proposed Project on the marine environment, in light of current stressors that have already been identified, including increases in surface water temperature and salinity, as well as decreases in oxygen saturation.

Issue 3.38: In Section 8.14.3.6 (Employment and Economy), within the *Commercial Marine – Harbours, Ferries, and Other Infrastructure* sub-section, the EA describes Northumberland Ferries' operations and traffic and carrying capacity. Yet in the socio-economic section of the EA, there is no analysis or discussion regarding how the potential marine related potential risks may interact as cumulative effects.

Recommendation 3.38: Discussion is required around the interactions between potential impacts from the new ETF discharges from the outfall, and ferry discharges within the harbour and Strait, and in turn the implications for ecological and human health risks, from a cumulative effects assessment standpoint.

3.6 Human Health

3.6.1 Summary of EA Content

A human health risk assessment (HHRA) was not completed as part of the Environmental Assessment Registration Document submission. Rather, NPNS completed a Human Health Evaluation (HHE), intended to prepare for the potential completion of an HHRA, which could be required as part of the conditions of approval for the Project (as stated in the EA). The HHE followed guidance from Health Canada.

The Human Health Evaluation focused on two primary sources of emissions or discharges that have the potential to result in exposure of humans to project-associated chemicals, namely (1) treated effluent released to the marine environment and (2) air emissions from the replacement effluent treatment facility and the existing NPNS mill. As such, the following human health exposure pathways were considered in the HHE for infants, toddlers, children, teens and adults:

- Incidental direct contact with sea water and/or marine sediments;
- Ingestion of marine food items, including those that are part of the commercial fishery and aquaculture;

- Inhalation of air contaminants during construction, operation and maintenance phases of the Project; and
- Ingestion of potentially impacted drinking water.

A quantitative assessment of potential exposures to project-associated chemicals of potential concern (COPC), and any resulting human health risks was not completed in the EA. This is, in part, due to the project-specific effluent chemistry not being fully known (because the chemical process engineering design work has not been completed). As such, the chemical composition of the effluent, including chemical concentrations, has not been fully characterized. Eventually, in the HHRA, it is expected that COPCs will be chosen based on an evaluation of baseline data, chemical toxicity, amount released, chemical fate and behaviour, and the resulting environmental concentrations.

As part of the HHE, NPNS completed a review of published reports (i.e., reports from Toxikos, 2006; Hewitt et al., 2006 as referenced in the EA) to inform the prediction of COPCs. It is stated, within the EA Registration Document, that the list of COPCs for the Project is expected to be relatively small and may include metals/metalloids (including mercury), polycyclic aromatic hydrocarbons (PAH), polychlorinated dibenzo(*p*)dioxins and furans, resin acid compounds, chlorophenolic compounds, non-chlorinated phenolic compounds and chlorinated volatile organic compounds (VOC).

3.6.2 Evaluation & Recommendations

Issue 3.39: A Class 1 Environmental Assessment does not specifically require the completion of an HHRA prior to the registration of the Project EA. However, the "Proponent's Guide to Environmental Assessment, September 2017" issued by Nova Scotia Environment, states that the registration document for a Class 1 undertaking should include any effects on environmental health, such as contaminants that may affect human health that will be released into the atmosphere, water or land. In addition, it is stated that the information included in the registration document needs to be sufficient for the Minister to make a decision on the undertaking. Without a complete HHRA that clearly quantifies potential exposures and risks (if any) to project-associated chemicals of potential concern, it is unclear how this stipulation will have been met through the provision of the HHE. Given the <u>potential</u> for risks to human health to occur as a result of exposure to chemicals of potential concern related to the proposed Project, the Human Health Evaluation, as presented, is not considered to be an adequate assessment of health risks.

Recommendation 3.39: A robust and comprehensive assessment of potential health risks (i.e., through the completion of a Human Health Risk Assessment) is required in order to determine if adverse health effects from the Project are likely.

Issue 3.40: Overall, within the EA Registration Documents, numerous assumptions are made regarding potential impacts to the receiving environment. It is unclear if an adaptive management plan or strategy has been developed should some of these assessment predictions differ from what is observed when the Project commences.

Recommendation 3.40: An adaptive management plan should be provided to address discrepancies between project assumptions and predictions, and what is found to occur in the environment once the Project begins. This plan should include an assessment of changes to predicted risks to human health, should the Project assumptions not hold true.

Issue 3.41: Section 9.2 - It is noted that Pictou Landing First Nation members traditionally harvest various species including lobster, rock crab, herring and American eel; however, the extent and details of their harvesting and consumption patterns are not known. It is also stated that possible local harvesting and consumption of bivalve shellfish may occur along shoreline areas around Caribou and Munroes Island. There appears to be uncertainty regarding fish consumption activities for both Indigenous and non-Indigenous people within the assessment area. This is a significant data gap in understanding the potential human health impacts related to the proposed Project.

Recommendation 3.41: The assessment of potential risks (if any) to human health associated with the Project requires a fulsome understanding of both the exposure concentrations of Contaminants of Potential Concern in the marine environment, and the exposure pathways identified as being of concern to human health (i.e., the consumption of fish and shellfish).

Issue 3.42: Section 9.1 – It is stated that effluent chemistry (i.e., chemicals present and their associated concentrations) is not known and won't be known until the Project is operational. In addition, other areas of uncertainty listed in the Project documents include limited (recent or current) environmental baseline data and food item chemistry data, and limited data on traditional harvesting and consumption patterns. As such, the Human Health Evaluation, as presented in the assessment, is based only on data and study results currently available. Again, the data gaps, as described by NPNS, are significant barriers to properly assessing potential risks to human health. It is unclear when a more robust set of baseline environmental data will be obtained and why this was not completed prior to the Project being registered. Baseline data is of extreme importance to the EA process, and specifically to the identification of Contaminants of Potential Concern in the assessment of health risks. In fact, within the EA, it is stated that consultation with Health Canada in relation to the HHE and potential HHRA resulted in a stated expectation by Health Canada to include both baseline and future conditions exposures scenarios.

Recommendation 3.42: A more robust assessment of baseline conditions (such as water quality, sediment quality, land use patterns, fish consumption rates and other relevant environmental attributes) must be completed prior to project approval, to understand potential risks to human health related to the Project.

Issue 3.43: Section 9.3 - With respect to air emissions, it is <u>anticipated</u> that a pilot study of the combustion of hog fuel and sludge in the power boiler will be conducted. Can NPNS confirm that this will be completed? It should be noted that Health Canada, in consultation with NPNS regarding potential health risks, outlined expectations regarding the need for an evaluation of potential changes in local air quality due to co-burning of sludge in the power boiler.

Recommendation 3.43: NPNS must confirm that the pilot study will be completed to evaluate the potential impacts to air quality due to the combustion of hog fuel and sludge in the power

boiler and must outline adaptive management strategies should the results of the air monitoring and pilot study not align with the assumptions and predictions of the current assessment.

Issue 3.44: Section 9.2.4.1 – Stantec (2019) reported that ambient air monitoring data for 2015, 2016, and 2017 showed no exceedances of the applicable Nova Scotia regulatory Air Quality Criteria for monitored air contaminants. It is unclear if 2018 data are available.

Recommendation 3.44: If 2018 air monitoring data are available from Stantec (2019), they should be included in the assessment.

Issue 3.45: Section 9.2.4.1 – It is stated that based on modeling results, predicted concentrations of the air contaminants of concern—namely CO, NO₂, SO₂, TSP, PM_{2.5} and H₂S—from the operation of the existing and future mill are expected to be in compliance with the reference criteria at the representative off-property discrete receptors. Modelled exceedances of H₂S were estimated to occur less than 0.05% of the time and believed to be an artifact of model inputs. However, it was reported that some odour occurrences were found that were associated with H₂S. A more fulsome discussion of what is meant by an artifact of model inputs is required. The EA does not discuss which adaptive management measures will be put in place to manage non-compliance issues should actual air emissions differ from predicted air emissions.

Recommendation 3.45: Details are required regarding adaptive management measures, to address the potential for actual air emissions to be greater than predicted emissions (based on modelling exercises). In addition, further discussion in the EA is needed regarding what is meant by an artifact of model inputs related to modelled exceedances of H₂S (Section 9.2.4.1).

Issue 3.46: Section 9 and Table 12.1-2 – The Human Health Evaluation did not acknowledge or address the potential for cumulative effects to impact overall human health. Surrounding land uses, including agricultural areas, may contribute to the overall contaminant load in the receiving water, and subsequently marine food items.

Recommendation 3.46: The potential risks to human health associated with cumulative impacts of the Project and current stressors must be considered in the assessment.

3.7 Socio-Economics

3.7.1 Summary of EA Content

Within NPNS's EA for its new effluent treatment facility, the socio-economic environment was considered for its "potential interaction with local communities, how land and water is used in the vicinity of the Project, and the potential interaction between the Project and the economic well-being of these communities" (Section 8.14).

The socio-economic environment's LAA is represented by the communities whose activities

intersect with the PFA and includes: Pictou Landing First Nation, local residents, and local industries located in the Municipality of Pictou County or the towns of New Glasgow, Stellarton, Pictou, Westville, and Trenton.

Within the EA socio-economic section introduction, NPNS describes the <u>interdependencies of other</u> <u>VECs</u> that need to be considered to assess impacts to the social and economic values, including health of communities, accidents and malfunctions, noise, air quality, heritage resources, drinking water, fishing, connection to the water and land (i.e., recreational enjoyment). The <u>mitigations</u> described for addressing the potential socio-economic effects that NPNS has identified within its Project's EA involve:

- a) Mitigations and assessment results within other EA sections (i.e., Section 8.11 Effects on harbour physical environment, water quality, and sediment quality; and Section 8.12 - Marine Fish and Fish Habitat);
- b) A communication plan (i.e., notifications to surrounding communities during construction)
- c) Ongoing engagement and information exchanges with the Community Liaison Committee;
- d) Noise and dust management through the EPP;
- e) Scheduling work to avoid or minimize interactions with other VECs (e.g., ferries, fisheries)
- f) Possible future mitigations should DFO or TC deem it necessarily as a result of their review.

During construction, the Proponent has identified the following potential effects that could occur on various aspects of the Socio-economic environment:

- Potential localized impact to commercial fisheries in the area due to construction interactions with target species;
- Short-term interruption to Jitney Trail use while construction occurs in that vicinity;
- Potential for periodic, short-term but planned delays to marine traffic including the NS-PEI Ferry and commercial fisheries leaving the marinas east of Northumberland Ferries marine terminal during construction stage where the pipeline route is anticipation to cross the navigational channel;
- Potential short-term traffic delays; and
- Potential for short-term nuisance (e.g., noise, dust) to local residents from construction activities, particularly in the vicinity of Caribou where residences are along Highway 106.

The Proponent states that with mitigation measures applied, the residual environmental effects of the Project on the socio-economic environment during construction will be temporary and not significant in nature.

During operation, NPNS states that "[A]s a result of the design and mitigation measures proposed, residual environmental effects are not expected to the socio-economic environment during operation and maintenance" (Section 8.14.4.3 Characterization of Residual Environmental Effects). The rationale provided is based on the following points or mitigations:

- The measures outlined in the EPP and the mitigation measures identified for other VECs will mitigate interactions with the socio-economic environment;
- Follow up and monitoring will be completed to monitor the environmental effects of the Project and mitigation any (socio-economic) impacts;
- Communications and Compensation Plan for Commercial Fisheries and Aquaculture, in coordination with NSE, DFO, and potentially impacted stakeholders;
- Anyone with concerns about the Project and its interactions with the environment may contact NSE's Area office in Granton; and
- The Community Liaison Committee will continue to facilitate two-way communication and advice to NPNS

Follow up and monitoring related to socio-economic value components will entail the mitigations listed within other VECs and ongoing meetings with the Community Liaison Committee.

3.7.2 Evaluation & Recommendations

Issue 3.47: In Section 8.14.1 (Boundaries), the EA states that "once the ETF or pipeline is nearing the end of a useful service life, a decommissioning plan will be developed and will be submitted for a separate review requiring NSE approval". It is unknown what the pipeline's anticipated lifecycle will be before land disturbance will be required again for its decommissioning, upgrading or replacing.

Recommendation 3.47: Provide information on the pipeline's lifecycle length and anticipated activities for its decommissioning (i.e., expansion, upgrades, replacement etc.)

Issue 3.48: In Section 8.14.2 (Interdependency with Other VECs), NPNS identifies the environmental VECs and impacts that the socio-economic environment relies on to identify impacts including: health of communities, accidents and malfunctions, noise, air quality, heritage resources, drinking water, fishing, connection to the water and land (i.e., recreational enjoyment). Although briefly discussed in the baseline section, missing in the EA are VECs and associated potential effects that reflect the economic and social factors triggered by the Project such as impacts to the local and regional economy, employment, and dynamics during construction phase (e.g., construction activities, workforce and social issues; direct, indirect and induced positive and adverse economic impacts).

NPNS must include VEC, and more importantly, a robust and consistent effects assessment on indicators related on the acknowledged VEC "health of communities" to capture missing elements of health and wellbeing, including the protection of a resilient fishery and associated economies including harvesting

and processing plants; employment, analysis of economic risks and/or benefits at community, regional and provincial level; description for, and management plans for anticipated workforce at both construction and operation phases.

Issue 3.49: In Section 8.14.3.4 (River and Marine Based Uses), NPNS states that "The lobster fishery has for many years been the largest fishery in the area by landing value (DFO 2008 and DFO 2017). However, the assessment of socio-economic effects will not place the importance of this fishery above others. An 'ecosystem approach' for impact assessment that looks at the health and resilience of the Strait as a whole was put forward and confirmed during discussions with all stakeholders, fishermen, and Pictou Landing First Nation." Later in the assessment however, there is no evidence of how stakeholder, fishermen and Pictou First Nation's concerns regarding direct and indirect impacts on the health of the marine eco-system nor fishing economy have been considered into the EA, let alone an ecosystem approach to the effects assessment (e.g., inclusion of eco-systemic interdependencies; species lifecycle differences; food chain dependency ripple effects across species etc.); there is no acknowledgement of industry and conservation efforts to maintain the integrity of commercial fisheries; there is no indication of understanding or indication of interest to understand the direct adverse economic and social impacts any disruption in fishing will have on harvesters – both Indigenous and non-indigenous, in the region; nor indication of how individuals within the lobster fishery or other fisheries (or their children as future participants in the fisheries sector) will be compensated or accommodated for losses as a result of the Project's construction and/or operations activities - missing just a *few days* of the fishing season is a serious impact to fisheries. Moreover, an analysis of the risks to a province and region whose economy is primarily dependent on its fisheries sector is absent from the socio-economic section altogether.

Recommendation 3.49a: Apply an actual ecosystem and integrated approach for the effects assessment that considers VEC interdependencies and an economic risk analysis to other economic sectors in the region – fisheries in particular;

Recommendation 3.49b: Provide a detailed description of the region's economic reliance on commercial fisheries, including individual harvester economic baselines and dependencies as they relate to fishing.

Recommendation 3.49c: Provide analysis of the Project's construction and operation phase effect mechanisms and interactions with harvesters' ability to fish (in terms of access); as well as potential risks to fishing economy due to risks to species' habitat, spawning area integrity and health.

Recommendation 3.49d: Describe how individuals within the lobster fishery (and other fisheries) will be compensated or accommodated for losses as a result of the Project's construction and/or operations activities. An explicit acknowledgement of the adverse economic impacts (and in turn social impacts on regional and community wellbeing and health) for fishers when even just a few days of fishing are interrupted is critical for a balanced effects assessment.

Issue 3.50: In Section 8.14.3.6 (Employment and Economy), within the *Manufacturing* sub-section, the EA describes how "...NPNS directly employs over 330 residents of Northern Nova Scotia; provides indirect and induced employment to Pictou County and the province of Nova Scotia in general; and that

NPNS' operations' maintain and create well over 2,000 jobs across the province in the forestry sector". This is appropriate baseline information, however the baseline information for employment and economy has a glaring, inappropriate and unacceptable omission of information to describe the how the region's socio-economic resilience is uniquely and primarily dependent on the health of the Northumberland Straight ecosystem to maintain the Province's primary economic sector: fisheries.

For instance, according to the Nova Scotia Department of Fisheries and Aquaculture, there are over 18,000 people working in the fishing sector within the Province; Lobster is the most valuable seafood export (\$947 Million in 2017); followed by crab (\$314 Million); scallops (\$144 Million); and shrimp (\$126 Million) (Nova Scotia Department of Fisheries and Aquaculture, https://novascotia.ca/fish/). In 2012, the lobster fishing industry in the Gulf Region consisted of 2,966 commercial lobster licence holders which included 215 communal commercial licences held by 18 Aboriginal organizations. Each of these commercial enterprises employs numerous people, bringing the total to about 7,100 individuals involved in the harvesting sector in the Gulf Region. In addition, there were nine Indigenous organizations which received communal lobster fishing licences for food, social and ceremonial (FSC) purposes (Fisheries and Oceans Canada, 2014).

The baseline neglects to acknowledge the Province's primary economy altogether: Of Nova Scotia's 5.4 billion export economy, seafood amounted to \$2 billion in 2017. Lobster and crab account for \$1.26 billion (Nova Scotia Department of Fisheries and Aquaculture; Government of Canada, n.d.). The baseline does not mention Government of Nova Scotia and fishing industry efforts and plans for the region such a legislated mandate to promote, support and develop the fishing, aquaculture, seafood processing and sportfishing industries that contribute to the economic, environmental and social prosperity of Nova Scotia's coastal and rural communities (Government of Nova Scotia, 2018).

Despite a hasty mention of these value components, 'economy' or 'employment' are not actually described in a way that reflects the region's socio-economic reality and are not carried forward at all into the socio-economic impact assessment. No analysis has been conducted of the risks that the Project's short- and long-term activities will pose to the existing, heavily relied upon, commercial fishing sector. This is unacceptable. A more comprehensive baseline is required to demonstrate the unique socio-economic regional context surrounding the proposed Project so that potential effects can be more accurately considered and in turn avoided or mitigated. As referenced in AMEC's *Northumberland Strait Ecosystem Overview Report* (2007), "[L]obster provides the largest share of total landed values for the main species (approximately 85%), and declines in this species alone are cause for concern"..."...the magnitude and longevity of the decline in commercial fisheries for highly dependent communities is more problematic than cyclical patterns experienced elsewhere or in the past (AMEC, 2007. Accessed from: https://docs.wixstatic.com/ugd/b61814_1639a02cebd94db4ba24787ad9a4cac7.pdf.)

Moreover, there has not been any consideration of other facets of the commercial fishing sector such as processing plants in Pictou County, and potential project interactions (e.g., between the plant's water intake pipes and NPNS's effluent discharge areas; such interactions could have devastating human health and economic impacts to the sector and product consumers).

Recommendation 3.50: NPNS must provide a balanced and accurate description of the existing regional socio-economic context, including regional health and wellbeing dependencies on the fish harvesting and fish processing sectors. Using complete baseline information, an economic effects assessment is required that carries forward information referred to within the baseline section including: Project effect mechanisms and interactions with existing fisheries economic sector, at a granular level i.e., net losses anticipated due to forecasted days of interruptions due to construction and operations); human health effect mechanisms and interactions with existing with economic risks related to fish processing plant operation requirements and interactions with effluent discharges; project workforce requirements; wages and salaries, and supply chain procurement needs during both construction and operations.

Issue 3.51: In Section 8.14.3.6 (Employment and Economy), within the *Tourism* sub-section, the EA describes how tourism in the county and region is heavily relied upon for its revenues. Given the level of priority this is for the LAA, the EA would have benefited from more relevant information within its baseline and EA analysis.

Recommendation 3.51: Provide more baseline information describing the specific aspects of the tourism sector within the LAA that have inter-connections with water – either from recreational usage or from drinking and/or other water uses. These details would be relevant within an ecosystem approach to the socio-economic impact assessment.

Issue 3.52: In Section 8.14.4.1 (Potential Environmental Effects), NPNS identifies the following (8) potential socio-economic related effects that may occur as a result of construction:

- 1. Temporary delays to Nova Scotia Prince Edward Island ferry due to marine construction;
- 2. Temporary delay or access distribution to marine areas (commercial or recreational) due to marine construction;
- 3. Traffic delays could occur on Highway 106 during construction;
- 4. Traffic delays (vehicular and ferry) discouraging tourists from entering the area or using the ferry;
- 5. Local road network could deteriorate from additional vehicular use due to traffic detouring;
- 6. Temporary nuisance (noise, dust) could be perceived by local residents during construction;
- 7. Temporary property access disruption to properties adjacent to construction may occur, particularly in vicinity to residents along Highway 106 at Caribou Harbour; and
- 8. Temporary access disruption to section of Trans Canada Trail or other recreational uses on land during construction of the effluent pipeline

These effects list access and disruption issues to various economic sectors and related activities, which in turn would negatively impact the local economy. However, the potential risk of these adverse effects are minimized if not completely ignored; they are not discussed nor analyzed. Mitigations from other VECs are referred to as the solution and in turn no effects of consequence are predicted. Unfortunately, as this technical review report demonstrates, the EA is riddled with data gaps and generic mitigations that simply do not provide confidence in their ability to address the potential risks as a result of the Project's construction and operations activities.

There is also mention of noise and dust nuisance, which is related to human health. Missing from this list of project effect mechanisms and interactions is the consideration of:

- Adverse social impacts to individuals and families who rely on uninterrupted or disturbed access to the fisheries;
- Cumulative effect of effluent discharge and ferry related discharges in the harbour and straight; which in turn have implications for human and eco-systemic health;
- Increased health and safety risks from an increase in traffic along Hwy 106 (i.e., vehicular/human accidents)
- Socio-economic impacts related to employment and supply chain procurement during construction and operations; and
- Potential social impacts related to the temporary construction workforce.

Recommendation 3.52: NPNS must provide information and analysis of the following:

- a) Discussion and analysis of risks and in turn, potential adverse social impacts to individuals and families who rely on uninterrupted or undisturbed access to the fisheries; including mitigations for avoiding this adverse impact.
- b) Identification of positive socio-economic effects from employment during the 21-month construction period as well as operations and maintenance. It is acknowledged that the Project description states that no additional jobs would be created during operations as existing personnel would be retrained for the new facility. Both phases of the Project need to be discussed in terms of what economic benefits would occur (even if no change during operations) within the socio-economic effects assessment. This allows the impact evaluation to demonstrate both the potential negative as well as the potential positive socio-economic impacts that would be predicted as a result of the Project's various activities, including employment generation and associated indirect and induced impacts during the 21 months' construction.
- c) A description of human and ecological health pathways, project interactions and effect mechanisms within the socio-economic effects assessment including a human health

risk assessment (i.e., drinking water within the LAA's wells; recreational water usage; Indigenous community members' land uses, water and wild foods consumption).

d) A discussion and demonstrated planning for health and safety considerations of the surrounding communities as related to construction, should there be a temporary, nonresident workforce hired for construction. Include whether the construction workforce will be housed in surrounding local communities and/or within temporary workcamps. How many workers are anticipated to be hired for the construction phase?

Issue 3.53: In Section 8.14.4.1. (Potential Environmental Effects), within the *Operations and Maintenance* sub-section, NPNS identifies the following (2) potential socio-economic related effects that may occur as a result of operations:

- 1. Interference with resources harvested for cultural, commercial, and recreational uses (e.g., if Project introduces odour, or negatively affects fisheries); and
- 2. The project impacts could negatively affect the local economy by interfering with resources needed for goods production, or transportation of those goods

Similar to the issues identified with the potential effects mentioned for construction, there is little acknowledgement (if not dismissal) of the risks the long term effects the operations will have on the local and regional fisheries. And based on the review of the fisheries, water and other aspects of the Project's design within the EA's registration documents, there are too many gaps in data and modelling to dismiss the potential for long term effects on the health of species; their habitat and/or migration due to effluent discharge and/or temperature change from the outfall.

Also missing from this assessment is consideration of impacts on tourism due to visual impacts and/or human health risks and/or perceived fear of recreational marine use; nor is there consideration of effects from pipeline integrity management activities (e.g., integrity digs and associated land disturbances).

Recommendation 3.53a: NPNS must provide discussion and analysis of potential effects to the health and integrity of the region's commercial fisheries based on results of more comprehensive effluent modelling, data upgrades and effects analysis as per the results of this EA's technical review of these inter-dependent VECs.

Recommendation 3.53b: NPNS must provide discussion and analysis of tourism impacts and human health risks related to Indigenous land and resources, and non-Indigenous lands and resources (i.e., drinking water and marine based recreation)

Recommendation 3.53c: NPNS must provide discussion and analysis of potential impacts of pipeline operations and maintenance (specifically integrity digs) on land and resource use for both Indigenous and non-Indigenous citizens.

Issue 3.54: In Section 18.4.2 (Mitigation), under the *Construction* sub-section, NPNS puts forth the following recommended mitigations to address the identified socio-economic impacts <u>during</u> <u>construction</u>:

"Standard construction best practices" for ...

- 1. Communication;
- 2. equipment operation;
- 3. construction staging; and
- 4. Roads which are travelled regularly by construction vehicles will be repaired.

The suggested mitigations are seemingly abstract plans without details nor commitments. In some cases, they are simply referred to as discussions to occur with various government agencies such as DFO. And all is deferred to mitigations within other VEC sections such as water and fisheries (8.11 and 8.12). The results of the review of these sections, however, point to limited or outdated data from which assumptions have been made in regards to impacts. And mitigations for water and fisheries are relatively general. There is not enough information, nor solid enough mitigations in place to provide assurance for the minimization and dismissal of the socio-economic effects.

Recommendation 3.54: NPNS must provide more fulsome consideration, description and commitment for specific mitigation, management and monitoring measure to address both the ecological and social factors related to the Project's activities at construction and operations as listed in previous comments.

Issue 3.55: In Section 8.14.3.6 (Employment and Economy), within the Manufacturing sub-section, the EA describes how "...NPNS directly employs over 330 residents of Northern Nova Scotia; provides indirect and induced employment to Pictou County and the province of Nova Scotia in general; and that NPNS' operations' maintain and create well over 2,000 jobs across the province in the forestry sector". This is appropriate baseline information, however the baseline information for employment and economy has a glaring, inappropriate and unacceptable omission of information to describe the how the region's socio-economic resilience is uniquely and primarily dependent on the health of the Northumberland Straight ecosystem to maintain the Province's primary economic sector: fisheries.

For instance, according to the Nova Scotia Department of Fisheries and Aquaculture, there are over 18,000 people working in the fishing sector within the Province; Lobster is the most valuable seafood export (\$947 Million in 2017); followed by crab (\$314 Million); scallops (\$144 Million); and shrimp (\$126 Million) (Nova Scotia Department of Fisheries and Aquaculture, https://novascotia.ca/fish/). In 2012, the lobster fishing industry in the Gulf Region consisted of 2,966 commercial lobster licence holders which included 215 communal commercial licences held by 18 Aboriginal organizations. Each of these commercial enterprises employs numerous people, bringing the total to about 7,100 individuals involved in the harvesting sector in the Gulf Region. In addition, there were nine Indigenous

organizations which received communal lobster fishing licences for food, social and ceremonial (FSC) purposes (Fisheries and Oceans Canada, 2014).

The baseline neglects to acknowledge the Province's primary economy altogether: Of Nova Scotia's 5.4 billion export economy, seafood amounted to \$2 billion in 2017. Lobster and crab account for \$1.26 billion (Nova Scotia Department of Fisheries and Aquaculture; Government of Canada, n.d.). The baseline does not mention Government of Nova Scotia and fishing industry efforts and plans for the region such a legislated mandate to promote, support and develop the fishing, aquaculture, seafood processing and sportfishing industries that contribute to the economic, environmental and social prosperity of Nova Scotia's coastal and rural communities (Government of Nova Scotia, 2018)

Despite a hasty mention of these value components, 'economy' or 'employment' are not actually described in a way that reflects the region's socio-economic reality and are not carried forward at all into the socio-economic impact assessment. No analysis has been conducted of the risks that the Project's short- and long-term activities will pose to the existing, heavily relied upon, commercial fishing sector. This is unacceptable. A more comprehensive baseline is required to demonstrate the unique socio-economic regional context surrounding the proposed Project so that potential effects can be more accurately considered and in turn avoided or mitigated. As referenced in AMEC's Northumberland Strait Ecosystem Overview Report (2007), "[L]obster provides the largest share of total landed values for the main species (approximately 85%), and declines in this species alone are cause for concern"..."...the magnitude and longevity of the decline in commercial fisheries for highly dependent communities is more problematic than cyclical patterns experienced elsewhere or in the past (AMEC, 2007).

Moreover, there has not been any consideration of other facets of the commercial fishing sector such as processing plants in Pictou County, and potential project interactions between the plant's water intake pipes and Northern Pulp's effluent discharge areas. Such interactions could have devastating human health and economic impacts to the sector; product consumers; and workforce employed by the plants:

For instance, there is no mention within the baseline section of the North Nova Seafoods Processing Plant in Pictou County, a fish processing plant in very close proximity to the proposed effluent outfall. The plant operates year-round processing a variety of species and employs over 150 people in Pictou County amounting to over \$Million in wages. Approximately 60 of the employees are fishermen that operate from NNS's private wharf in Caribou in front of the processing plant. In addition, the plant supports fishermen from 10 other wharfs on the Northumberland Strait and an additional 50 wharfs in Cape Breton to Yarmouth and into PEI and NB (Paul Logan, North Nova Seafoods).

Critical to the processing plant's operations is its use of an intake pipe in the harbour that uses water for the plant's cleaning process. The water is tested regularly to ensure that it is cleared to use. This is a very sensitive issue as the plant is making a ready to eat product and there are strict CFIA guidelines that are followed. The plant's intake pipe will be a few kilometers away from where the proposed effluent pipe is going to be located. With a proposed discharge of 70-90 million litres of treated effluent from a bleached kraft mill every day, it will prevent the plant from using the intake pipe for the necessary water to operation (Paul Logan, North Nova Seafoods). This will have substantial adverse ecological, and in

Solutions

turn socio-economic impacts by way of possible human health issues from product contamination and may result in the closure of the processing plant which would have devastating economic impacts to the region.

Figure 9. Location of Nova North Seafood Processing Plant in Relation to Northern Pulp's Proposed Outfall Location

Recommendation 3.55: Provide a balanced and accurate description of the existing regional socio-economic context, included regional health and wellbeing dependencies on the fish harvesting and fish processing sectors. Using complete baseline information, an economic effects assessment is required that carries forward information referred to within the baseline section including: project effect mechanisms and interactions with existing fisheries economic sector, at a granular level (i.e., net losses anticipated due to forecasted days of interruptions due to construction and operations); human health effect mechanisms and interactions with existing with economic risks related to fish processing plant operation requirements and interactions with effluent discharges; project workforce requirements; wages and salaries, and supply chain procurement needs during both construction and operations.

4.0 Conclusion

As outlined above, numerous issues and concerns related to ETF design, effluent modelling, impacts to the marine environment, socio-economics, as well as risks to human and ecological health have been identified in the review of the Project EA Registration Documents.

Given the significant information and data gaps outlined in this technical review, it is apparent that the Minister has not been provided with the appropriate data and information required to make an informed decision regarding the Project. A lack of baseline environmental data, effluent chemical composition data, quantified risks to human health and marine life, and a detailed socio-economic assessment, indicates that the potential for 'adverse effects or environmental effects' of the proposed undertaking has not been adequately characterized. The EA does not acknowledge or address the magnitude of potential adverse effects on the region's commercial fisheries and the thousands of (Indigenous and non-Indigenous) citizens who are dependent on a resilient fishery.

As such, in our professional opinion, the Project cannot be approved as currently registered. Given the numerous issues, data gaps and information gaps identified in the EA, we recommend that the Minister, as per Section 13 of the Environmental Assessment Regulations made under Section 49 of the Environment Act, determine either that

- the registration information is insufficient to allow the Minister to make a decision and additional information is required (Section 13(1) (a)), or
- a review of the information indicates that there may be adverse effects or significant environmental effects caused by the undertaking and an environmental-assessment report is required (Section 13(1) (d)).

5.0 References

- AMEC, 2007. Northumberland Strait Ecosystem Overview Report. Accessed from: https://docs.wixstatic.com/ugd/b61814_1639a02cebd94db4ba24787ad9a4cac7.pdf.
- AMEC Earth & Environment. 2007. Northumberland Strait Ecosystem Overview Report. Submitted to Fisheries and Oceans Canada Gulf fisheries Centre, Moncton, New Brunswick.
- Birtwell et al, 1999. The Effectsof Sediment on Fish and Their Habitat. Canadian Stock Assessment Secretariat Research Document 99/139.
- Brillant, S. W., Vanderlaan, A. S., Rangeley, R. W., & Taggart, C. T. (2015). Quantitative estimates of the movement and distribution of North Atlantic right whales along the northeast coast of North America. *Endangered Species Research*, *27*(2), 141-154.
- Chassé, J., Lambert, N., Comeau, M., Larouche, P., Galbraith, P., and Pettipas, R. 2013 Physical Environment Conditions in the southern Gulf of St. Lawrence. DFO, GFC-IML-BIO.
- Chassé, J. and Miller, R.J. 2010. Lobster Larval Transport in the Southern Gulf of St. Lawrence. Fish. Oceanogr. 19:5, 319-338.
- Claret, Mariona & Galbraith, Eric & Palter, Jaime & Bianchi, Daniele & Fennel, Katja & Gilbert, Denis & Dunne, J. (2018). Rapid coastal deoxygenation due to ocean circulation shift in the northwest Atlantic. Nature Climate Change. 8. 10.1038/s41558-018-0263-1.
- COSEWIC. 2011. COSEWIC assessment and status report on the Atlantic Sturgeon Acipenser oxyrinchus in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. xiii + 49 pp. (www.sararegistry.gc.ca/status/status_e.cfm).
- COSEWIC. 2013. COSEWIC assessment and status report on the North Atlantic Right Whale *Eubalaena glacialis* in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. xi + 58 pp. (www.registrelep-sararegistry.gc.ca/default_e.cfm).
- Davis, G. E., Baumgartner, M. F., Bonnell, J. M., Bell, J., Berchok, C., Thornton, J. B., ... & Clark, C. W. (2017). Long-term passive acoustic recordings track the changing distribution of North Atlantic right whales (Eubalaena glacialis) from 2004 to 2014. *Scientific reports*, 7(1), 13460.
- Daoust, P.-Y., E.L. Couture, T. Wimmer, and L. Bourque. 2017. *Incident Report: North Atlantic Right Whale Mortality Event in the Gulf of St. Lawrence, 2017*. Collaborative report produced by the Canadian Wildlife Health Cooperative, Marine Animal Response Society, and Fisheries and Oceans Canada, 256 pp.

- DFO. 2005. The Gulf of St. Lawrence, A Unique Ecosystem. The Stage for the Gulf of St. Lawrence Integrated Management (GOSLIM). Oceans and Science Branch, Fisheries and Oceans Canada. Cat. No. FS 104-2/2005
- DFO. 2011. Assessment of the scallop fishery (Placopecten magellanicus) of the southern gulf of St. Lawrence. DFO Can. Sci. Advis. Sec. Sci. Advis. Rep. 2011/039.
- DFO, 2012. State-of-the-Ocean Report for the Gulf of St. Lawrence Integrated Management (GOSLIM) Area.
- DFO, 2014. Lobster Overview. Accessed from: http://www.glf.dfompo.gc.ca/Gulf/FAM/IMFP/2014-Lobster-Overview#Participants.
- DFO. 2017. Assessment of the Atlantic Mackerel Stock for the Northwest Atlantic (Subareas 3 and 4) in 2016. DFO Can. Sci. Advis. Sec. Sci. Advis. Rep. 2017/034.
- DFO. 2018a. Assessment of the southern Gulf of St. Lawrence (NAFO Div. 4T) spring and fall spawner components of Atlantic herring (*Clupea harengus*) with advice for the 2018 and 2019 fisheries.
 DFO Can. Sci. Advis. Sec. Sci. Advis. Rep. 2018/029
- DFO. 2018b. Stock Assessment of Atlantic Halibut of the Gulf of St. Lawrence (4RST) in 2016. DFO Can. Sci. Advis. Sec. Sci. Advis. Rep. 2017/052.
- DFO. 2018c. What we heard report: A summary of comments from the 2018 Pan-Atlantic Roundtable on North Atlantic Right Whales. Published October 23, 2018. Retrieved from: <u>http://www.dfo-mpo.gc.ca/species-especes/publications/mammals-mammiferes/2018-roundtable-tableronde/index-eng.html</u>
- DFO. 2018d. Fishery management measures for right whale protection. Retrieved from: http://www.dfo-mpo.gc.ca/species-especes/mammals-mammiferes/narightwhalebaleinenoirean/fm-gp/index-eng.html
- DFO, 2019a. Update of the Stock Status Indicators of the American Lobster, Homarus Americanus, Stock of the Southern Gulf of St. Lawrence to 2018. Canadian Science Advisory Secretariat Gulf Region Science Response 2019/008
- Durbin, E., Teegarden, G., Campbell, R., Cembella, A., Baumgartner, M. F., & Mate, B. R. (2002). North Atlantic right whales, Eubalaena glacialis, exposed to paralytic shellfish poisoning (PSP) toxins via a zooplankton vector, Calanus finmarchicus. *Harmful Algae*, 1(3), 243-251.
- Ecometrix, 2019. Environment Effects Monitoring Program Investigations Associated with eh New Proposed Treated Effluent Discharge Configuration at the Northern Pulp Nova Scotia Corporation Mill. Appendix G of NPNS Environmental Assessment.

- ECCC (2017). Proposed modernization of the Pulp and Paper Effluent Regulations: Consultation document. Environment and Climate Change Canada: Gatineau, QC.
- Government of Nova Scotia, 2018. 2018-2019 Business Plan Department of Fisheries and Aquaculture. Accessed from: https://novascotia.ca/government/accountability/2018-2019/2018-2019business-plan-Department-of-Fisheries-and-Aquaculture.pdf.
- Jacques Whitford Environmental Limited (JWEL). 1996. First Cycle Final Report Aquatic Environmental Effects Monitoring Program – Boat Harbour Wastewater Treatment Facility. Report to the Nova Scotia Department of Supply and Services.
- Lauzier, L.M. 1965. Drift bottle observations in Northumberland Strait, Gulf of St. Lawrence. Journal Fisheries Research Board of Canada 22(2): 353-368.
- Logan, Paul. Letter to CEAA requesting CEAA federal assessment (n.d.).
- Nova Scotia Environment, 2018. A Proponent's Guide to Environmental Assessment.
- Nova Scotia Department of Fisheries and Aquaculture; Government of Canada (n.d.) Accessed from: https://www.ic.gc.ca/eic/site/tdo-dcd.nsf/eng/Home
- Galbraith, P.S., Chassé, J., Gilbert, D., Larouche, P., Caverhill, C., Lefaivre, D., Brickman, D., Pettigrew, B.,
 Devine, L., and Lafleur, C. 2014. Physical Oceanographic Conditions in the Gulf of St. Lawrence in
 2013. DFO Can. Sci. Advis. Sec. Res. Doc. 2014/062. vi + 84 p.
- Hannah M. Murphy, Jonathan A. D. Fisher, Arnault Le Bris, Mathieu Desgagnés, Martin Castonguay, Timothy Loher & Dominique Robert (2017) Characterization of Depth Distributions, Temperature Associations, and Seasonal Migrations of Atlantic Halibut in the Gulf of St. Lawrence using Pop-Up Satellite Archival Tags, Marine and Coastal Fisheries, 9:1, 1-356, DOI: <u>10.1080/19425120.2017.1327905</u>
- Hanson, J.M. and Comeau, M. 2017. Progress on the Ecosystem Research Initiative for the Northumberland Strait since October 2012. Can. Manuscr. Rep. Fish. Aquat. Sci. 3145: ix + 29
- Encyclopedia Britannica: Scientific Model https://www.britannica.com/science/scientific-modeling.
- MacCarthy, A., and C. Egilsson. 2019. Caribou Harbour and Caribou Channel dynamics, tides, ice, marine species and fisheries. Submission from Local Fishermen, February 21, 2019. 12 p.
- Meyer-Gutbrod, E. L., & Greene, C. H. (2018). Uncertain recovery of the North Atlantic right whale in a changing ocean. *Global change biology*, *24*(1), 455-464.

- Meyer-Gutbrod, E. L., Greene, C. H., & Davies, K. T. (2018). Marine Species Range Shifts Necessitate Advanced Policy Planning: THE CASE OF THE NORTH ATLANTIC RIGHT WHALE. *Oceanography*, *31*(2), 19-23.
- Newcombe and Jensen, 1996. Channel Suspended Sediment and Fisheries: A Synthesis for Quantitative Assessment of Risk and Impact. North American Journal of Fisheries Management 16:693-727.
- Plourde, S., Lesage, V., Gosselin, J., Johnson, C., & Brown, M., and J. Goldbogen. (2016). A Spatial Climatology of Calanus Species Biomass and New Potential Feeding Habitats of NARW on the Eastern Scotian Shelf and in the Gulf of St. Lawrence (Canada). NARWC Annual Meeting, New Bedford, 2-3 November 2016.
- Sprague, J.B., and McLeese, D.W. (1968). Toxicity of kraft pulp mill effluent for larval and adult lobsters and juvenile salmon. *Water Research, 2,* 753-760.
- Stantec Consulting Ltd. (Stantec). Preliminary Receiving Water Study for Northern Pulp Effluent Treatment Plant Replacement, Pictou Harbour, Nova Scotia. August 2017.
- Stantec Consulting Ltd. (Stantec). Addendum Receiving Water Study for Northern Pulp Effluent Treatment Facility Replacement Project – Additional Outfall Location CH-B, Caribou Point, Nova Scotia. December 2018.
- Rondeau, A., J.M. Hanson, M. Comeau, and T. Surette. 2016. Identification and Characterization of Important Areas based on Fish and Invertebrate Species in the Coastal Waters of the Southern Gulf of St. Lawrence. DFO Can. Sci. Advis. Sec. Res. Doc. 2016/044. vii + 70 p.
- Weisbrod, A. V., Shea, D., Moore, M. J., & Stegeman, J. J. (2000). Organochlorine exposure and bioaccumulation in the endangered Northwest Atlantic right whale (Eubalaena glacialis) population. *Environmental Toxicology and Chemistry*, 19(3), 654-666.

Project Team Curricula Vitae

Alison Fraser, M.Sc. Risk Assessment Specialist, Shared Value Solutions Ltd.

Overview

Alison Fraser is a risk assessment specialist with a strong background in human health and ecological risk assessment, as well as environmental toxicology. Alison has managed, reviewed and conducted environmental risk assessments for residential, parkland, commercial and industrial sites across Canada. She has a strong background in third party peer reviews of both human health and ecological risk assessments. She is a Qualified Person for Risk Assessment (QPRA) under Ontario Regulation 153/04.

Alison's passion is working to minimize the health risks associated with environmental contamination, by incorporating technically sound science and the needs of affected communities. Alison is a long-time member of the Society of Environmental Toxicology and Chemistry (SETAC) on both a regional and national level. In 2013, she was awarded the SETAC Presidential Citation for Exemplary Service.

Specialties

Project management | human health risk assessment | ecological risk assessment | environmental toxicology | environmental impact assessment and environmental site assessment

Selected Experience

Technical Review of a Phase 1 Environmental Site Assessment (ESA). Aroland First Nation.

2017 – present

Risk Assessment Specialist and Project Manager. A technical review of a Phase 1 ESA was conducted to identify any data gaps in the assessment results. This included community meetings to discuss the ESA and obtain feedback from community members, as well as a site visit.

Contact

alison.fraser @sharedvaluesolutions.com (226) 706 8888 ext. 117

> 62 Baker Street Guelph, ON N1H 4G1

Professional History

April 2016 – Present Risk Assessment Specialist Shared Value Solutions Ltd.

2002 – 2015 Risk Assessment Specialist/Associate Dillon Consulting Ltd.

> 2001 – 2002 Junior Risk Assessor Golder Associates Ltd.

1999 – 2001 Teaching Assistant (Biology) Trent University

Technical Review of a Proposed Transmission Line EA 2017 – present

Risk Assessment Specialist and Project Manager. Reviewed the EA, and associated supporting documentation, related to the development of a proposed transmission line that would traverse two Indigenous communities in Northern Ontario. Potential environmental risks were identified subsequent to the review, and community meetings were held to obtain community input and discuss the review results.

Technical Review of the East West Tie Transmission Line EA 2017 – present

Risk Assessment Specialist. Conducted a technical review of the project EA, with a focus on potential impacts to human health, on behalf of six Indigenous communities.

Magnetawan First Nation (MFN) Environmental Management Plan 2016 – present

Risk Assessment Specialist and Project Manager. Developed an Environmental Management Plan for MFN, intended to provide guidance on the management of lands, and potential environmental risks, under the community's land code.

Aroland First Nation Community Energy Plan 2016 - 2017

Risk Assessment Specialist. A Community Energy Plan (CEP) was completed for Aroland First Nation. The plan included the collection and analysis of energy use data from residential and community/commercial buildings on reserve lands. Using recent Hydro One bills, a financial assessment was also completed. The results of the assessment were used, in conjunction with a needs assessment, to develop the Aroland CEP.

Technical Review of the Energy East Pipeline ESA. Grand Council Treaty #3. 2016 - 2017

Risk Assessment Specialist. A review of potential risks to both human and ecological receptors was conducted on behalf of Grand Council Treaty #3, for the Energy East Pipeline Project. The review focused on the rights and interests of community members, and considered their strong reliance on the land for food, recreation and cultural practices.

Technical Review of the Energy East Pipeline Project ESA. Mi'gmawe'l Tplu'taqnn Incorporated (MTI).

2016 - 2017

Risk Assessment Specialist and Project Manager. Conducted a technical review of the pipeline project ESA for MTI communities. Potential risks to both human and ecological health were identified. Community meetings, and meetings with the proponent, were carried out to present and discuss the review results. The project also included the provision of NEB process support.

Education

M.Sc. Environmental Science Trent University

B.Sc. Environmental Science (Honours) University of Guelph

Years of Experience

15

Training and Certifications

Qualified Person for Risk Assessment under Ontario Regulation 153/04 2012 - Present

> Soil Vapour Assessments Laurentian SETAC Short Course 2015

Decision Making Over Project Life From Exploration to Site Closure and Important Statistical Decisions Laurentian SETAC Short Course 2014

> Multivariate Statistics Laurentian SETAC Short Course 2011

> Review of Environmental Risk Assessments Laurentian SETAC Short Course 2011

Professional Affiliations

Cambridge Environmental Advisory Committee Member 2015 – Present

Society of Environmental Toxicology and Chemistry (North America) 2000 – Present

Technical Review of Greenstone Gold Mine Environmental Assessment on behalf of Aroland First Nation

2016-Present

Risk Assessment Specialist. Assisted in a technical review of the Greenstone Gold Mine Project on behalf of Aroland First Nation. The review focused on the potential risks to both human health and the environment, associated with the project.

Sisson Mine Project Draft Comprehensive Study Report and Environmental Assessment Review. Mi'gmawe'l Tplu'taqnn Incorporated (MTI). 2016

Risk Assessment Specialist. Conducted a review of the human health and ecological risk components of the EA on behalf of MTI. Data gaps and technical issues related to potentially unacceptable environmental risks were identified. Proposed mitigation measures to address risks were also evaluated in the review.

Site-Specific Human Health and Ecological Risk Assessment – RCMP Detachment Site, Nunavut. Public Works and Government Services Canada. 2014

Risk Assessor. Completed a human health and ecological risk assessment for an RCMP detachment site in Nunavut. Historical sampling conducted at the site, as well as sampling conducted as part of the supplemental site investigation, indicated the presence of petroleum hydrocarbons and metals in soil above applicable guidelines. A risk assessment was completed at the site, which included an assessment of background concentrations of metals in soil. A soil vapour assessment was also conducted. No unacceptable risks were found to occur, thus no risk management measures were required.

Site-Specific Human Health and Ecological Risk Assessment – RCMP Detachment Site, Northwest Territories. Public Works and Government Services Canada. 2013

Risk assessor. Completed a human health and ecological site-specific risk assessment at an RCMP detachment site in Northwest Territories, known to have PHC impacted soil and groundwater. A supplemental site investigation was conducted to further delineate groundwater impacts. A vapour assessment was conducted within the onsite building located in the area of PHC impacts, to quantify potential migration of vapours into indoor air. Potential risks to human and ecological receptors present on the site were quantified.

Risk Assessment – Frontenac Correctional Institution, Public Works and Government Services Canada.

2012 - 2013

Risk Assessment Specialist. A site specific human health risk assessment and screening level ecological risk assessment was conducted for the Frontenac Institution, a correctional institution in eastern Ontario, on behalf of Corrections Services Canada. The site was located adjacent to a wetland area, with several streams traversing the site.

Third-Party Peer Review of Risk Assessments, Ministry of Environment and Climate Change. 2011-2015 Society of Environmental Toxicology and Chemistry (Laurentian Chapter) Member, VP, President and Committee Lead 2002 - Present

Risk Assessment Specialist and Project Manager. Conducted third-party peer reviews of Ontario Regulation 153/04 risk assessments on behalf of the MOECC. The risk assessments were for a variety of land uses including commercial, industrial, residential and parkland, with the intent to file a Record of Site Condition.

Risk Assessment/Risk Management, Commercial Property and Retail Store, Ontario.

2010 - 2015

Risk Assessment Specialist and Project Manager. A human health and ecological risk assessment was conducted for a site located above a known chlorinated solvent groundwater plume. The risk assessment identified the migration of chemical vapours from groundwater to indoor air as having the potential to cause adverse health effects to indoor employees. A subslab vapour depressurization system was designed and installed at the site to mitigate unacceptable risks. A Record of Site Condition was obtained for the site.

Human Health Risk Assessments – Light Stations, Public Works and Government Services.

2010 - 2011

Risk Assessment Specialist. A site specific human health and screening level ecological risk assessment was conducted for five sites that house light stations in Ontario, on behalf of the Department of Fisheries and Oceans. Supplemental site investigations, including soil, groundwater, and surface water sampling, were conducted on the sites to support the risk assessments. The results of the assessments were subsequently used to prioritize sites for potential future remediation.

Sediment Management Strategy, Sarnia Harbour, Transport Canada and Public Works and Government Services Canada.

2009-2011

Risk Assessment Specialist and Project Manager. A detailed sediment assessment was conducted for the Sarnia Harbour. The project included the assessment of potential risks to both human and ecological receptors exposed to sediments of the harbour. Both sediment and surface water sampling was carried out as part of the assessment. A preliminary quantitative risk assessment (PQRA) using the triad approach (chemical analyses, benthic community assessment and sediment toxicity testing) was completed for the harbour. The results of the assessment suggested no risks to human health or ecological receptors would be expected, however, additional sampling and analysis were recommended to address the previously identified data gaps. As a result, a second sampling event was conducted and the triad approach was once again applied. The results formed the basis of a detailed quantitative risk assessment (DQRA) conducted at the site. The results once again suggested no risks to human or ecological health.

Environmental Site Assessment and Risk Assessment – Lighthouse Sites, Public Works and Government Services Canada. 2009 - 2010

Risk Assessor. Environmental site assessments were conducted at six sites in Ontario that housed either lighthouses or day markers, on behalf of the Department of Fisheries and Oceans. Contaminants of concern identified at the

sites included metals and polycyclic aromatic hydrocarbons. The results of the site investigations formed the basis of both human health and ecological risk assessments for each site. The results of the assessments were subsequently used to prioritize sites for potential future remediation.

Environmental Assessment, Confidential Power Generating Company 2009

Risk Assessment Specialist. In support of the environmental assessment process in Ontario, screening level human health and ecological risk assessments were conducted for two sites that were planned for redevelopment in order to house new power generating facilities. The assessment included the quantitative modeling of deposition and subsequent exposure of both humans and ecological receptors to emissions from the power plants. No unacceptable risks were found.

Human Health and Ecological Risk Assessment, Wetland Property (Ontario)

2008 - 2015

Risk Assessment Specialist and Project Manager. A human health and ecological risk assessment was conducted for a site that contained a provincially significant wetland and historical landfill. The site contained elevated concentrations of metals and polycyclic aromatic hydrocarbons in soil, groundwater, surface water and sediment. Risk management measures implemented at the site included a restriction on the construction of buildings on the site and a prohibition on the use of the site for potable groundwater.

Quantitative Ecological Risk Assessment, Confidential Petroleum Sector Client 2006

Risk Assessor. A quantitative ecological risk assessment was carried out at a former bulk plant property in Eastern Canada due to the presence of benzene, toluene, ethylbenzene, and xylenes and petroleum hydrocarbons in soil and groundwater on the site. Potential risks to both the terrestrial habitat on-site and the aquatic habitat in the adjacent river were quantified.

Risk Assessment, Former Sodium Chlorate Manufacturing Facility. 2005 - 2010

Risk Assessor. A human health and ecological risk assessment was completed at an environmentally sensitive site due to the presence of organic chemicals and metals in the soil, groundwater and surface water. The site was considered to be part of a wider area of abatement under O. Reg. 153/04. As such, public consultation was carried out throughout the risk assessment process. A Record of Site Condition was obtained for the site.

Toxicological Reference Values Review, Health Canada. 2004

Risk Assessor. A comparative review of toxicological reference values (TRVs) was carried out on behalf of Heath Canada. This entailed compiling TRVs from numerous regulatory agencies. A screening process was then used to identify those chemicals

for which variation among TRVs was greatest. The rationale used in the derivation of the values was then evaluated to identify possible causes for the observed variation.

Levi Snook, B.Sc. Aquatic Biologist, Shared Value Solutions Ltd.

Overview

Levi is a fisheries and aquatic biologist with six years of experience in the fields of fisheries science, aquatic ecology and ecosystem management. He has served as the lead biologist for several projects supporting Environmental Assessment and federal and provincial approvals and permits for the hydropower, mining, transportation and renewable energy sectors. Mr. Snook has lead fish and fish habitat inventory programs as part of baseline studies on proposed mining and transportation projects. He is a Qualified Fisheries Specialist by the Department of Fisheries and Oceans and the Ministry of Transportation Ontario.

Levi has lead several aquatic investigation programs on proposed hydroelectric sites, including assessment of pre-dam spring and fall fish spawning sites and classification of baseline site conditions. He also has experience conducting water and sediment quality monitoring, benthic invertebrate community sampling, and mapping using GIS applications.

Specialties

Aquatic ecology | Limnology | Ecosystem Management | Environmental Construction Monitoring | GIS | Project Coordination

Selected Experience

Pic River Watershed Modelling and Aquatic Monitoring Program 2016

Worked with Biitigong Nishnaabeg community members to develop an aquatic monitoring program as part of baseline data collection for the Energy East pipeline project. Identified appropriate aquatic sampling locations in order to monitor potential environmental effects associated with the pipeline. Baseline data collection involved sampling of water, sediment and benthic macroinvertebrates.

Contact

Levi.snook @sharedvaluesolutions.com (226) 706 8888

> 62 Baker Street Guelph, ON N1H 4G1

Professional History

2016– Present Aquatic Biologist Shared Value Solutions Ltd.

> 2013 - 2016 Aquatic Specialist CH2M

2011 - 2013 Aquatic Specialist AMEC Environment and Infrastructure

2010 - 2011 Environmental Scientist Hatch Ltd.

Levi Snook, B.Sc.

Pic River Proposed Hydroelectric Dam Site, Pic River Hydro 2010

Led field crew in spring lake sturgeon spawning survey for proposed hydro dam site in northern Ontario; involving gill netting and processing adult lake sturgeon, administering external Floy Tags, and surgically implanting internal radio tags. Used Radio telemetry to monitor lake sturgeon dispersal in river following spawning. Completed several summer Riverine Index Netting studies as well as spring walleye and fall lake whitefish spawning surveys, involving mark and recapture of spawning congregations over successive years. Work included processing size and weight, assessing sexual maturity, collecting aging structures and tissue samples. Reported findings to clients and regulatory agencies.

Rainy River Gold Mine, Rainy River Resources August 2011

Carried out baseline fish collection and aquatic habitat classification program for proposed mine site in Northern Ontario. Study involved deployment of various fish collection gear types to collect both small and large-bodied fish species. Processed fish for size and weight, and sampled for aging structures and mercury analysis. Assessed aquatic habitat recording stream dimensions, flow morphology, depth profiles, water quality and identifying aquatic and terrestrial vegetation. Collected water and soil samples for lab analysis. Reported findings to clients and regulatory agencies.

Water Quality Monitoring and Fish Salvages, Oil and gas, Infrastructure and Mining Companies, Alberta, British Columbia

2013 - 2016

Led crews in carrying out long-term water quality monitoring programs during various construction projects. Programs involved manual turbidity sampling and deployment of turbidity monitors to detect increases in total suspended solids in waterbodies during construction activities. Crews would also sample for a variety of other water quality parameters to monitor changes in baseline conditions. Carried out fish salvages during in-stream isolations prior to dewatering for construction on several pipeline and mining projects. Fish identified to species, measured for length and weights, and released live into suitable habitat outside of construction areas.

Highway Expansion Projects, Ministry of Transportation, Greater Toronto Area, Ontario

2011 - 2013

Carried out fish habitat and fish community inventory investigations on watercourses crossing major highways throughout the Greater Toronto Area for the Ministry of Transportation. Assessments involved fish collection using a backpack electrofisher, as well as detailed habitat mapping including identifying flow morphology, stream channel dimensions, substrate compositions, aquatic and terrestrial vegetation, general water quality parameters, watercourse sensitivities, and overall availability of direct and indirect fish habitat. Reported findings to clients and regulatory agencies.

Education

B.Sc. Environment and Natural Resource Sciences Trent University

> Ecosystem Management Technology Diploma Sir Sanford Fleming College

> Ecosystem Management Technician Diploma Sir Sanford Fleming College

Years of Experience

6

Training and Certifications

Riparian Areas Regulation Certification 2015

Ministry of Transportation Fisheries Assessment Protocol Accreditation 2012

> Class 2 Back Pack Electrofishing Crew Leader Certification 2014

> > Snorkel Survey Certification 2013

Swift Water Rescue Certification 2013

Ice Rescue Training Certification 2013

H2S Alive Certification 2013

Wildlife Awareness Certification 2013

First Aid and CPR Certification

Levi Snook, B.Sc.

Woodfibre Fortis EGP Eagle Mountain Pipeline, Fortis BC 2012 - 2013

Conducted fish and fish habitat surveys along extent of proposed pipeline route through southern British Columbia from Vancouver to Squamish. Carried out snorkel surveys on main stem systems, as well as fish collection via electrofishing and minnow traps and DNA sampling on target salmonid species. Consultations and joint sampling efforts with marine biologists to analyze potential impacts on estuary and tidally influenced systems. Made recommendations on pipeline crossings for watercourses based on fish presence and available habitat. Conducted riparian assessments along pipeline route to develop remediation and reclamation plan following construction.

Spectra LNG Pipeline, Spectra Energy 2011 - 2012

Aquatic Specialist. Conducted fish and fish habitat surveys along extent of proposed pipeline route through northern British Columbia. Assessments involved fish sampling using backpack electrofishers and minnow traps, assessing water quality and quantifying various aspects of stream characteristics and fish habitat. Made recommendations on pipeline crossings for watercourses based on fish presence and available habitat

Trout Lake River Proposed Hydroelectric Dam Site 2010 - 2011

Completed several summer Riverine Index Netting studies as well as spring walleye and fall lake whitefish spawning surveys involving mark and recapture of spawning congregations over successive years. Work included processing size and weight, assessing sexual maturity, collecting aging structures and tissue samples. Deployed egg mats throughout river to assess potential spawning locations. Reported findings to clients and regulatory agencies.

Metalex Ventures Proposed Mine Site, Attawapiskat, ON July 2011

Carried out initial baseline data collection on Attawapiskat River and associated tributaries at a proposed mine site for Metalex Ventures. Study involved the collection of water, sediment, and benthic macroinvertebrates samples from sites surrounding the proposed mine site. Collected sediment samples using a petite ponar, and benthic macroinvertebrates were collected using a surber sampler. Reported findings to clients and regulatory agencies.

ATV and Argo Operation Certification 2013

Royal Ontario Museum Fish Identification and Species at Risk 2012

> Radio and Ultrasonic Telemetry Fish, Wildlife and Environmental Monitoring Certification 2008

Pleasure Craft Operators Card

Jeremy Shute, M.A., R.P.P. Managing Partner, Shared Value Solutions Ltd.

Overview

Jeremy Shute has a broad background in land use, resource and community planning and communications. He is a professional planner as well as a mediator, facilitator and cartographer. He has been involved in land use planning and in the planning profession in a variety of capacities including mentoring new planners, evaluating land use planning processes, teaching land use planning courses, working with Indigenous communities to develop land use plans, integrating community values and land use and occupancy data into community and land use planning processes and reviewing development proposals within the context of land use plans.

Jeremy's professional focus is on using collaborative planning, meaningful community engagement, communication and consensus building to:

- prevent, reduce and solve land use planning conflicts;
- improve project and process design; and
- incorporate multiple interests in planning, governance and decision making.

He specializes in integrating local and traditional knowledge and community values in project planning and regulatory processes such as environmental assessment. Jeremy has worked in the energy, waste management, forestry, mining, transportation, contaminated sites and water management sectors. He has worked at the interface of development projects and Indigenous communities in a wide range of settings in Ontario, Quebec, Nova Scotia, Nunavut, Manitoba, Saskatchewan, Alberta and British Columbia.

Contact

Jeremy.shute @sharedvaluesolutions.com (226) 706 8888 ext. 105

> 62 Baker Street Guelph, ON N1H 4G1

Professional History

2012 - Present Managing Partner Shared Value Solutions

2005 - 2012 Consultant – Communications, Consultation AECOM

> 2000 - Present Owner Cardinal Maps

2002 - 2004 Owner, The Salsateria

1986 – 1990 Owner, Machute Reforestation

Specialties

Plain language communication | community engagement | land use and community planning | traditional and local environmental knowledge | community development | natural resource management | stewardship | problem solving | negotiation | the Duty to Consult | First Nation consultation | Aboriginal community consultation | conflict prevention | conflict resolution | mediation | facilitation | cartography | participatory mapping | ecological restoration | water resources management | risk Communication

Selected Experience

Magnetawan First Nation

2017 Project Director for development of reserve-based land use plan.

Anishnaabeg of Naongashiing

2017

Project Director for technical review local gold mine. Project includes assessment of potential impacts to community's rights and interests related to the project and recommendations for reducing and mitigating impacts.

Eeyou Marine Region Planning Commission

2016

Prepared and delivered a land use planning training course for the Commission and a number of other organizations with jurisdiction and interest in northern Quebec. The training was based on the BEAHR program and was tailored for the specific needs of the Commission and the workshop participants. The purpose of the training was to both build capacity with the Commission to undertake their own planning process and build a collaborative planning environment among individuals and organizations.

Community Energy Plan and Initiative – City of Guelph 2017

Process advisor and community engagement specialist.

Anishinabek/Ontario Fisheries Resource Centre 2017

Project Director and teacher for collecting and using traditional knowledge.

First Nation Water Supply Conference 2017 Moderator and coordinator

River Systems Advisory Committee, City of Guelph 2008 – 2016

Chair of the Committee until the fall of 2015. The Committee review urban development applications and proposals that are near the river and creek systems within the City of Guelph. The Committee then provides advice and

Education

M.A., Geography Carleton University 1994

B.A., (Honours Year) Geography University of Guelph 1989

B.A. Geography University of Western Ontario 1988

Years of Experience

15

Training and Certifications

Conflict Resolution & Dispute Negotiation Ryerson University School of Urban and Regional Planning 2003

Public Facilitation and Conflict Resolution. University of Guelph. School of Rural Planning and Development 2003

Training in Nutrient Management Planning under the Nutrient Management Act 2003

Advanced Course on Mediating Land Disputes. Consensus Building Institute/Lincoln Institute of Land Policy 2004

> Structure and design of digital geographic databases Ryerson University 2004

recommendations to the Planning Department about how those projects and planning processes could be improved to reduce social, aesthetic and environmental impacts.

Guelph-Wellington Mediation Centre 2016-2017

Community advisor for the establishment of a conflict resolution centre and service in the City of Guelph and County of Wellington.

Hiawatha First Nation, Community Water Plan 2012 – 2014

Working with the First Nation and other technical experts to understand and communicate about water quality and quantity issues on the reserve and identifying economic development opportunities for the community.

Grand Council of Treaty #3 2015 – 2016.

Project director for a technical review of the Energy East project. Activities include developing a review framework that addresses specific community and nation concerns, integrating community and Anishnabek values into the review and bringing together a variety of disciplines to work together on creating one holistic review.

Aroland First Nation, Multiple Projects – Land Use Planning, Governance and Management of Natural Resources, Community Economic Development, Negotiation Assistance, Community Energy Planning, Traditional Knowledge (TK) / Traditional Land Use Study (TLUS)

2012-Present

Working with the community on several projects including assisting the Elders Group in developing their governance framework, assisting the community in negotiations with mining companies, energy companies and with Ontario, assisting the community in participating in the Environmental Assessment process, assessing Land Use planning data, developing new land use planning processes, developing a Community Energy Plan. Activities include ongoing communication as well as presentations to elders, pillar groups and the wider community and the development of community newsletters and surveys.

Sagamok Anishnawbek, 2015.

Training and capacity building for land use planning. Prepared materials and communication documents and delivered a 4-day Land Use Planning workshop to community staff as they begin to prepare their Land Use Plan.

Confidential Client – Southern, ON 2009-Present

Ecological restoration of a historic contaminated site creating Old Field and forest habitat. As the site has no public access and will be under remediation for several years, we are trying to have the site become a long-term native seed bank (including rare and endangered species) for the surrounding area.

Mediation Skills. Conflict Resolution Services of Downsview 2005

Communications/Planning for Effective Public Participation. International Association of Public Participation 2006

Professional Certification Course. Ontario Professional Planners Institute 2007

Techniques for Effective Public Participation. International Association of Public Participation 2008

Principled Negotiation University of Windsor Faculty of Law/Stitt, Feld, Handy Group 2010

Wilderness First Aid Certification 2014

Moving water rescue certification 2015

Community Involvement

Member, River Systems Advisory Committee Guelph, Ontario 2008-2016

Member, Urban Forest Working Group City of Guelph 2015-2017

> Moderator, Groundswell Water Conference 2014

Ontario Professional Planners Institute 2014 – 2016

Mentor for new and provisional planners.

Ontario Ministry of the Environment and Climate Change 2015 - 2016

Working on behalf of two First Nations during the development of a proposed new Technical Standard for Benzene emissions from Ontario refineries

Saugeen Ojibway Nation 2012 - 2016

Technical Peer Review of proposed Renewable Energy Approvals (REA) wind projects in the First Nation's traditional territory. Specifically assessing natural heritage, water, and cultural values aspects based on the values of the community.

Constance Lake First Nation, Ontario 2008 – 2010

Assisted the First Nation in an assessment and evaluation of their land use planning process. Assisted First Nation in community communication regarding boil water advisory and water crisis. Assisted the First Nation development of a new water supply.

Saugeen Ojibway Nation

2014 – 2016

Communications planning and implementation for internal SON community engagement.

Aamjiwnaang First Nation

2015 – Present

Training, capacity building and project planning for a community run Land Use Study.

Grassy Narrows First Nation, Ontario 2008 – 2010

Community advisor for a collaborative forest management planning process. Project incorporates community values, traditional knowledge, mapping sites of community significance, traditional use and occupancy and western scientific approaches to forestry management into the development of new forest management practices.

Canadian Environmental Assessment Agency 2014

Research related to Aboriginal Traditional Knowledge in Environmental Assessment. Conducted research on the consideration and integration of Aboriginal Traditional Knowledge in Environmental Assessments. Work included a literature review of key academic, grey literature and environmental assessment sources as well as key informant interviews with relevant practitioners and knowledge sharing workshops with Agency staff. Speaker, Environmental Law and Regulation in Alberta, Canadian Institute Conference. "Pro-active Strategies for Building Sustainable Relationships with Aboriginal Groups and Negotiating Successful Consultation Programs 2013

Speaker, 19th annual Environmental Sciences Symposium on "Traditional Knowledge and Cultural Perspectives on the Environment 2013

Speaker, Global Citizenship Conference - Making a difference with Social Entrepreneurship 2013

Member of the Technical Advisory Committee for the City of Guelph Storm Water Management Master Plan 2010

Member of the Public Advisory Committee for the City of Guelph 2008

Water Conservation and Efficiency Strategy Update. Member of the Ignatius Old Growth Forest Restoration Committee 2008-2011

Founding member of House of Velvet (musical ensemble)

Member of the Guelph Round Table on Economy and Environment 2004-2008

Facilitator at the Guelph Urban Design Workshop 2003 Mediating Land-disputes Workshop 2004 Green Impact Guelph 2008

Pimicikamak Cree Nation 2013 – Present

Project Director. Land Use and Occupancy and Oral History Project - to document traditional land use and traditional knowledge within the community as relates to a proposed hydro-electric development project.

Magnetawan First Nation Traditional Knowledge and Land-use Study – Highway 69 Expansion Project Ministry of Transportation of Ontario 2012 – 2013

Carried out GIS-based land use mapping with community knowledge holders and produced both a documentary video and archival-quality video interviews for future educational use. Project outcomes include mapping of community land use and occupancy and impact and mitigation assessment for highway expansion through reserve lands. Land use and occupancy mapping methods were adapted from the Terry Tobias "Living Proof" guide.

Métis Nation of Ontario

2010 – Present

Advisor, researcher – Oral history and traditional knowledge studies in a variety of geographical locations in Ontario using video and audio with key community informants. Land use and occupancy mapping project using tablet-based GIS.

Atikameksheng Anishnawbek, Consultation Protocol and Organizational Framework

2013

Community research and interviews for the development of a consultation protocol for the First Nation and an organizational "tune-up" to increase clarity on roles and responsibilities within the band administration.

Saskatchewan Research Council, Athabasca Region, Saskatchewan 2010.

Facilitator, end use and community goals for Gunnar Mine Rehabilitation Project. Worked with area communities (First Nations, Métis and non-native), and provincial and federal agency stakeholders.

Walpole Island First Nation, Ontario 2010 – 2011

Manager – feasibility study for large-scale landscape remediation project. Activities include managing biophysical baseline studies, incorporating community and traditional knowledge into project planning and developing a framework to assist the community in decision making.

Township of Centre Wellington, Ontario 2008 – 2010

Project manager/advisor - Aboriginal communities consultation for the redevelopment of a bridge over the Grand River and a waste water treatment plant adjacent to the Grand River.

Mapping the Natural History of Guelph - Buried streams (1992-present). Identifying and mapping buried streams throughout Guelph. Produced and Member of Guelph's Recreation, Parks and Culture strategic planning community team 2000

Participant in GRCA's "A Watershed Forest Plan for the Grand River" 2003

Participant in workshops for: City of Guelph's Growth Management Strategy; City of Guelph's Development Application Review Process; SmartGuelph; City of Guelph's Greenway Vision and Plan and Open Space Development Criteria; the City of Guelph's Official Plan; the Ontario Forest Policy Panel's Forest Policy Framework for Ontario.

distributed a map to schools, community groups, the Conservation Authority, City of Guelph. The map includes trails, topography, access points, buried, historic and current water ways, locations of schools, parks, points of interest and other standard geo layers. The map has been used to identify remnant ecology in an urban environments and to promote the stewardship of water by connecting community members and schools and school programs to the small water bodies and wildlife patches throughout the city. Delivered lectures at the University of Guelph, with Nature Guelph, to school groups, a local festivals to explain the historical river systems in Guelph and the management of small watercourses. The purpose of the map is to connect people to the natural environment that is right under the feet that they don't know exists.

Whitefish River First Nation, Ontario 2009 – 2011

Project manager, peer review of harbour expansion Environmental Assessment and Certificate of Approval. Activities included assessing potential impacts from expanded harbour activities and recommending approaches to prevent or mitigate impacts to local environment and community.

Nipissing First Nation, Ontario 2006 – 2007

Assessment of renewable energy resources and power generation business opportunities.

Walpole Island First Nation, Ontario 2008 – 2009

Assessment of proposed wind power projects within the Aboriginal community's Traditional Territories.

Tidal power feasibility project, Nova Scotia

2008

Preliminary evaluation of First Nation interests in the proposed project.

Lambton Area Water Supply Project, Ontario 2009 – 2011

Project Manager. Aboriginal community engagement and consultation for an expansion of a municipal water supply system. Selected route has potential to impact reserve lands and land currently under land claim negotiations. Activities included determining how project could potentially impact aboriginal rights and community interests, and how those impacts could be prevented or mitigated through changes to project design and inclusion of community interests in project planning.

Clean Harbors Hazardous Waste Facility, Ontario 2009 – 2011

Manager. Environmental Assessment Terms of Reference phase and Environmental Assessment Phase - community consultation process.

NextEra Energy Canada 2010 - 2011.

Manager – community consultation process for Renewable Energy Approvals process for three wind energy centres.

NextEra Energy Canada

2011 Facilitator – stakeholder and community meetings for other existing projects.

Conestogo Highlands Windfarm Project, Ontario

2005 – **2008.** Developed community and Aboriginal consultation programs for a ~65 MW wind farm. Included community mapping process, managing the public liaison committee, and building diverse stakeholder interests into project design.

Elgin Area Water Supply System, Ontario 2010 – 2011

Transmission line twinning - Advisor Community consultation process – design/build phase.

Ministry of Northern Mines, Development and Forestry, Ontario and Manitoba 2011

Project manager, researcher for assessment of potential impacts to aboriginal rights of proposed mine rehabilitation project.

Zinifex, Nunavut

2008

Facilitated strategic planning process for a mine expansion and the development of an all-weather road from the Yellowknife region to Bathurst Inlet.

Thierry Mine, Ontario

2011 Advisor, aboriginal community engagement.

Métis Nation of Ontario

2010

Trainer and coach for Negotiation and Conflict Resolution skills development.

Ontario Ministry of Transportation 2011

Facilitator - community meetings for the Windsor Essex Parkway redevelopment. Advisor – 2010 - community engagement, Highway 400 redevelopment through Magnetawan First Nation

City of Toronto, Ontario 2009 – 2010 Advisor, community relations for Waste Water Treatment Master Plan

City of Hamilton, ON 2009 – 2010 Advisor, community relations for Waste Water Treatment Master Plan

Town of Innisfil, ON

2010

Water Treatment Plant Upgrade Class EA, Aboriginal community consultation manager.

Métis Nation of Ontario

2010.

Advisor, researcher in the development of a framework to effectively engage and comment on diverse development projects in the Boreal Forest. Activities included translating community values and goals into practical tools that can be used to shape and influence project design to minimize potential impacts from development projects on the environment and on the Métis Way of Life.

Remediation project – Ontario

2009

Manager – large-scale ground water, surface water remediation project. Tasks included managing project budgets, scheduling, reporting and coordinating field staff and discipline leads.

Contaminated Sites Communications, Ontario 2005 – 2011

Community relations manager. Development of risk communication and consultation strategies for several brownfield sites in Ontario. 2005-2009

Nestlé Waters Canada, Puslinch, Ontario 2007 – 2008

Managed community engagement process. Developed a multi-stakeholder collaborative planning framework for a water taking project in order to incorporate community and stakeholder interests in project planning. Created a wide range of opportunities for constructive dialogue in a highly charged environment.

Walker Industries, Ontario

2009 - 2011

Manager of Aboriginal community consultation process for a proposed landfill project in the Niagara region. Developed non-aboriginal community engagement process for potential new sites.

Walker Industries, Ontario

2010 - 2017

Manager of Aboriginal community consultation process for a proposed landfill project in Oxford County. Developed multi-community engagement process for potential new site.

Government of Saskatchewan

2009

Development of Aboriginal community consultation process for a regional highway project.

Northern Alberta 2007

Preliminary evaluation of Aboriginal community interests related to a proposed energy project.

Ontario Association of Impact Assessment

2007

Facilitator for wind energy component of the 2007 "Duty to Consult" conference.

Community Justice Initiatives, Kitchener, Ontario

2005 – 2010

Lead mediator for public disputes.

Guelph Roundtable on Environment and Economy, Ontario 2006 – 2008

Development of a community leadership forum to build capacity among municipal staff, the development industry and community groups to effectively resolve infill development disputes

Grand River Conservation Authority Forestry Management Plan Working Group.

Participated in the development a plan for the Grand River Conservation Authority for the management of watersheds forests, including conservation and protection planning, access management, invasive species management, prioritizing restoration planting, and finding approaches to balance visitor experience with environmental protection.

Hanlon Creek Conservancy 1995 – 2000

Original member of a community organization that developed and implemented approaches manage a trail system (removing trails in some places and building trails in others), to increase access in some areas and reduce access in areas of environmental fragility throughout the Hanlon Creek Watershed. The group carried out trail building with school groups and built a series of bridges to reduce stream bank erosion.

Alison Gamble, MES, C.Chem. Environmental Scientist, Shared Value Solutions Ltd.

Overview

Alison Gamble is a proud citizen of the Métis Nation of Ontario. She is an environmental scientist with a background in water quality, contaminated sites, and waste management and is a registered Chartered Chemist with the Association of the Chemical Profession of Ontario. She has vast experience with client liaison, stakeholder engagement, and logistical planning and has previously led a provincial government policy review and development initiative to support forest fire response operations. She has also been involved in the environmental monitoring and reporting for active and closed waste management facilities. She has experience in monitoring groundwater and surface water systems and conducting stream assessments and benthic invertebrate studies. Alison has participated in committees for the public advisory of forest management plans, and promoting awareness and support for the Aboriginal community in a postsecondary education setting.

Alison completed her B.Sc. in Chemistry at the University of Guelph in 2014, where she focused on analytical and inorganic chemistry, along with environmental chemistry and toxicology. In 2016 she completed a Masters of Environmental Science at University of Guelph specializing in hazardous waste management, contaminated sites, and environmental impact assessments.

Alison has been fishing ever since she could hold a rod and reel, and foraging wild edibles since she started walking. Combined with a deep scientific curiosity, this has led Alison to become passionate about protecting traditional ways of life through conservation and remediation efforts.

Contact

alison.gamble@sharedvaluesolutions.com (226) 706 8888 ext. 110 C: (807)-323-0625

> 62 Baker Street Guelph, ON N1H 4G1

Professional History

December 2017 – Present Environmental Scientist Shared Value Solutions Ltd.

January – September 2017 Environmental Remediation Scientist AECOM

July 2015 Aircraft Charter Coordinator Canadian Interagency Forest Fire Centre

October 2014-April 2015 Special Project Technician Ontario Ministry of Natural Resources and Forestry

Specialties

Environmental chemistry | site remediation | waste management | water quality | stakeholder engagement | logistics planning | policy review and compliance |

Selected Experience

Offshore Drilling Technical Reviews. Mi'gmawe'l Tplu'taqnn Incorporated. February 2018

Project Coordinator. Conducted a literature review on the effects of offshore drilling as it pertains to the key issues/interests of MTI, and supported team with compiling the final report for submission.

Nuclear Power Demonstration Technical Review. Algonquins of Ontario. February 2018

Project Coordinator and Technical Reviewer. Assisted with coordinating project (administrative support, file set up, project set up, gathering background documents) and completed a technical review of the wetlands section of the draft EIS.

Romeo Malette Forest Management Planning. Métis Nation of Ontario. December 2017 to February 2018

Project Coordinator and Junior Environmental Community Engagement Consultant. Drafted a demographics report on the Metis community near the Romeo Malette Forest for submission to Ministry of Natural Resources and Forestry. Facilitated a community values workshop where community members identified values of concern within the FMU and any issues with the current forest management practices. Prepared a report on the findings of the community workshop for submission to MNRF.

IAMC Line 3 Regulatory Advisory. Manitoba Metis Federation, Métis Nation - Saskatchewan, and Métis Nation of Alberta. January 2018 to Present

Project Coordinator and Junior Consultant. Conducted initial screening of regulatory filings for Line 3 Replacement Project from project approval to current date (summarized filings and flagged for having potential impact/issues for Metis Governments). Conduct daily scan of regulatory websites for new filings and google news alerts and summarize in spreadsheet, and provide a weekly summary report with any issues and recommended actions for Metis Governments identified. Prepare monthly summary report outlining outstanding issues, recommended actions, and information requests for Metis Governments.

Manitoba to Minnesota Transmission Project Technical Review. Anishinaabeg of Naongashiing.

January 2018

Project Coordinator and Technical Reviewer. Assisted with coordinating project (administrative support, file set up, project set up, finalizing

Education

Master of Environmental Science University of Guelph

> B.Sc. Honours Chemistry University of Guelph

Years of Experience

3

Professional Affiliations

Chartered Chemist Association of the Chemical Profession of Ontario May 2017 – Present

Training and Certifications

Standard First Aid AED and CPR Level C Red Cross January 2018

Restricted Radio Operator's License, Aeronautical Designation Transport Canada July 2011

deliverables) and completed a technical review of the Accidents and Malfunctions section of the EIS.

Algonquin Forest Aboriginal Background Information Report. Algonquins of Ontario.

August 2018

Project Contributor. Assisted in preparing an Aboriginal Background Information Report on the history and relationship of the Algonquins of Ontario with the Algonquin Forest Management Unit, and outlining the community values, rights and interests as they relate to forestry.

Developing Indigenous Environmental Keepers Program - Ecological Restoration Course. Atikamekshing Anishnawbek. October 2018

Curriculum Developer. Produced student lesson plan course outline, course presentations, activity materials, and teacher notes for the Characterization of Mine Waste and Contamination and Remediation modules of an ecological restoration course focused on the metal mining industry.

Spanish and Sudbury Forests Aboriginal Background Information Reports. Atikamekshing Anishnawbek.

May 2018

Project Contributor - Assisted in preparing Aboriginal Background Information Reports on the history and relationship of Atikamekshing Anishnawbek with the Sudbury and Spanish Forest Management Units, and outlining the community values, rights and interests as they relate to forestry.

Technical Review and Comments on Enbridge Line 21 Regulatory Documents. Dehcho First Nations.

April 2018

Technical Reviewer. Completed peer technical reviews of the Line 21 Sump Construction and Management Plan and Sediment and Erosion and Sediment Protection Plans.

Line 21 Project Management Framework. Dehcho First Nations. May 2018

Junior Environmental Consultant. Provided on the ground training to Indigenous Guardian Monitors on the topics of terrestrial monitoring, socioeconomical monitoring, turbidity monitoring, data management protocols, and field work safety. Developed corresponding field data sheets, and field identification guides for local terrestrial species-at-risk and cultural artefacts. Performed data analysis on all turbidity data that was collected for the field season.

Technical Review of the Goliath Gold Mine EIS. Eagle Lake First Nation. June 2018

Technical Reviewer. Completed peer technical review of the wetlands and vegetations sections of the Revised Goliath Gold Mine EIS.

Forestry Consultation Support. Eagle Lake First Nation. April to October 2018

Junior Environmental Consultant. Completed a technical review of applicable forestry annual work schedules to determine how the plans conflicted with ELFN's rights and interests. Provided support and technical advice on methods of engagement and consultation, and supported conversations between the First Nation and MNRF through facilitated conference calls and formal letters outlining community concerns.

Line 3 Regulatory Processes Training Course. Manitoba Metis Federation. March 2018

Project Contributor. Developed course training materials (including presentations, student handouts, and class activities) on the regulatory process for Enbridge's Line 3, environmental assessments, the National Energy Board roles and responsibilities, and proposed revisions to relevant legislation.

NOVA Gas Westpath Delivery Project Technical Review. Métis Nation of Alberta

September to October 2018

Project Coordinator and Technical Reviewer. Assisted with coordinating project (administrative support, file set up, project set up, gathering background documents, coordinating client calls, finalizing report for submission), completed a technical review of the Accidents and Malfunctions section of the EIS, and provided client support in navigating the NEB participant portal and submitting project filings.

Regulatory Review of Bills C-68 and C-69. Métis Nation of Ontario. March 2018

Junior Consultant. Participated in meetings with client and legal representatives to identify potential areas of concern in the proposed Bills C-68 and C-69. Prepared a letter for client to submission to the federal government providing comments, issues, and recommendations for the proposed legislation.

Region 3 Forestry Consultation and Engagement Support. Métis Nation of Ontario.

March to July 2018

Project Coordinator and Junior Consultant. Prepared a regional Aboriginal Background Information Report outlining the connection to lands and waters, values, and concerns of the Metis community as they relate to forestry in MNO Region 3. Developed an Interim Engagement Plan that clearly outlines the steps and timelines that MNO requires for engagement and consultation by MNRF throughout the forest management planning cycle. Conducted a literature review of MNRF area of concern buffers and accommodations to determine adequacy of protection of Metis values. Prepared a report outlining proposed best practices for the protection of Metis values, and identified potential forest harvest blocks in the Romeo Malette Forest Management Unit that will require further discussion between MNO and MNRF on appropriate protection measures.

Way of Life Documentary Video Project. Métis Nation of Ontario. August 2018 to Present

Project Coordinator and Video Narrator. Prepared script materials for documentary videos, narrated documentaries, and assisted in compiling existing still images to be incorporated into videos.

Technical Review of Encana Corporation's Abandonment of the Deep Panuke Offshore Gas Development. Mi'gmawe'l Tplu'taqnn Incorporated. October 2018

Technical Reviewer. Completed a technical review of the terrestrial environment and migratory birds sections of the project ESA.

Technical Review of the Environmental Impact Assessment for the NB Power Fundy Isles Submarine Cables Replacement Project. Mi'gmawe'l Tplu'taqnn Incorporated.

April 2018

Technical Reviewer. Completed a technical review and prepared a corresponding report outlining the potential impacts of the proposed project to MTI rights and interests.

Mushkegowuk Community Health Consultations. Mushkegowuk Health Council.

April 2018 to Present

Logistics Coordinator. Assisted in arranging consultation logistics, including a charter plane, transportation, accommodations, meeting catering, and venue bookings.

Technical Review of the Environmental Assessment and Corresponding Support for the Proposed Northern Pulp Effluent Outfall. Northern Pulp Environmental Assessment Working Group.

February 2018 to Present

Project Coordinator and Junior Consultant. Completed a literature review of pulp mill operations in Canada to assess if other comparable pulp mills are releasing effluent into marine environments, assess whether other Canadian pulp mills use effluent treatment methods similar to those proposed for the Northern Pulp mill in Abercrombie Point, and identify the possible composition and characteristics of effluent from similar pulp mill operations.

Technical Review of the Hydro One Lake Superior Link Transmission Project. Biigtigong Nishanaabeg.

June 2018

Project Coordinator and Technical Reviewer. Reviewed the draft terms of reference for the environmental assessment relating to Hydro One's proposed Lake Superior Link Transmission Project. Prepared a report outlining potential environmental issues and concerns related to the project, measures to address these issues, and provided support to Biigtigong Nishanaabeg during the pre-consultation process.

Monitoring and Reporting of Waste Management Sites (various townships throughout Ontario)

2017

Field Team Lead. Coordinated logistics and supervised staff for field work and site visits. Performed routine environmental monitoring by collecting surface water, groundwater, and leachate samples and measuring surface water flow rates and groundwater levels. Analyzed field data and corresponding relevant government standards to prepare technical monitoring reports for client submittal to government authorities.

Risk Assessment of Vaccination Production Line for Industrial Pharmaceutical Plant

2017

Observation Recorder. Entered sterile biohazard laboratory as an external auditor to observe employee conditions and vaccination production line. Documented any observed high-risk activities for product integrity and/or employee health and safety.

Study on the Efficiency of a Fishway in the Grand River 2016

Research Assistant. Assisted with a telemetry study by collecting and recording field data, handling fish, operating passive integrative transponder (PIT) equipment and performing implantations, and analyzing overall fish health.

Development of Charter Protocols. Canadian Interagency Forest Fire Centre

2015

Provincial Representative. Liaised with provincial, national, and international government representatives to design and execute a set of standard operating procedures for organizing cross-country charter flights. Developed and maintained a budget tracking system to monitor expenditures and cost savings to prove significance of pilot study.

Policy Compliance Review and Procedure Development. Ontario Ministry of Natural Resources and Forestry 2014 to 2015

Project Lead. Conducted an extensive internal compliance review of provincial procedures and guidelines by examining existing government policies. Scheduled, organized and facilitated stakeholder consultations in the form of teleconference interviews, face to face meetings, and group forums to receive efficiency feedback. Made discipline specific recommendations to managers and user groups based on findings, and subsequently developed, wrote, and distributed a new documented set of provincial procedures and guidelines.

Electrochemical Analysis on the Feasibility of Electrodeposition of Pb²⁺ from Wet Ionic Liquid 2014

Researcher. Conducted bench top studies on the efficiency and ideal parameters for the electrodeposition of lead ions from a wet ionic liquid, as part of a preliminary study on novel techniques for the remediation of aqueous mining waste.

Public Advisory Group for Domtar's Forest Management Plan of the Wabigoon Forest

2009 to 2011

Youth Representative. Provided input and suggestions on the operations of pulp mill and forestry operations to ensure sustainability objectives were being met.

Peer Reviewed Publications

M. Deen, C. Shamshoom, A. Gamble, D. Bejan, and N.J. Bunce (2016). Electrodeposition of metal cations from the wet ionic liquid [EMIM][TFSI], Can. J. Chem., **94**, 170-175.

Allie Mayberry, M.A., B.Sc Wildlife Biologist and Social Research Consultant, Shared Value Solutions Ltd.

Overview

Allie Mayberry is a wildlife specialist with a background in biology and human geography. She has diverse experience working on wildlife management, natural resource management, and community development projects with Indigenous communities in Canada, Southeast Asia, and Southern Africa. Allie is also a strong communicator who has engaged in environmental education, natural history interpretation, and multimedia public outreach initiatives.

She has contributed to a variety of projects including Indigenous knowledge and land use and occupancy studies, policy review, environmental management planning, and technical peer reviews of environmental assessments for transmission lines, pipelines, and mines. Allie is also an experienced natural and social science researcher. She holds a B.Sc in Biology from Mount Allison University where she conducted scientific research on North American shorebird migration and an M.A. in Geography from the University of Guelph, where she worked closely with rural farming communities in Botswana to investigate the impacts of human-elephant conflict on well-being.

Allie is passionate about bridging the gap between communities, governments, and the private sector by helping them to achieve their wildlife and natural resource management goals. She believes that positive working relationships are built on clear communication and mutual understanding, and enjoys projects that are beneficial for all parties involved.

Specialties

Wildlife Biology | Community Consultation and Engagement | Natural Resource Management | Social and Natural Science Research Methods | Eco-Tourism | Human-Wildlife Conflict | Social Media | Visual Communications

Contact

Allie.Mayberry @sharedvaluesolutions.com (226) 706 8888 ext. 122

> 62 Baker Street Guelph, ON N1H 4G1

Professional History

2016 – Present Wildlife Biologist and Social Research Consultant Shared Value Solutions Ltd.

> 2015-2017 Social Media Advisor Elephants for Africa

2013 – 2016 Assistant Guide Great Bear Nature Tours Ltd.

2013- 2015 Graduate Researcher University of Guelph, Department of Geography

Selected Experience

Mi'gmaq Indigenous Knowledge Study for Mi'gmawe'l Tplu'taqnn Incorporated

August 2017 – Present.

Project Contributor. Conducting Community Cultural Values Mapping, as well as map biography and oral history interviews with Mi'gmaq land users, with specific reference to proposed development projects (peat moss harvesting, submarine power transmission). Main tasks include data management and analysis, as well as report writing.

Aquatic Baseline Study for the Sheshegwaning First Nation Aquaculture Project.

September 2017 – Present.

Project Contributor. Assisted with the execution of aquatic baseline sampling and in-field training and capacity development for Sheshegwaning First Nation aquaculture staff. This includes collecting a suite of environmental parameters such as water quality, sediment quality, and benthic invertebrate community analysis, and assisting with data management and report writing.

Technical Review of the Greenstone Gold Mine Final Environmental Assessment for Aroland First Nation, Animbiigoo Zaagi'igan Anishinaabek, and Ginoogaming First Nation.

September 2017 – Present.

Technical Reviewer. Conducted a technical peer review of the project draft environmental assessment pertaining to Wildlife & Wildlife Habitat and Terrestrial Vegetation & Wetlands, considering the rights and interests of the above communities.

Joint Technical Review of the NextBridge East-West Tie Transmission Line Project Draft Environmental Assessment for Red Rock Indian Band, Pays Plat First Nation, Bingwi Neyaashi Anishinaabek, Biinjitiwaabik Zaaging Anishnaabek, Animbiigoo Zaagi'igan Anishinaabek, and Fort William First Nation

June – September 2017

Technical Reviewer and Project Coordinator. Conducted a technical peer review of the project draft environmental assessment pertaining to Wildlife & Wildlife Habitat and Terrestrial Vegetation & Wetlands, considering the rights and interests of the above communities. Also responsible for coordinating report writing, material preparation, community meeting, and ongoing client communications/support tasks.

Technical Review of the Henvey Inlet Wind Transmission Line Environmental Review Report for Magnetawan First Nation and Shawanaga First Nation. July – September 2017

Technical Reviewer. Contributed to technical peer review of the project environmental review report pertaining to Wildlife & Wildlife Habitat and Terrestrial Vegetation & Wetlands, considering the rights and interests of the above communities. Also assisted with the development of Species at Risk 2013-2015 Graduate Teaching Assistant University of Guelph, Department of Geography

2011-2012 Community Volunteer Coordinator Global Vision International, Thailand Elephants Project

> 2009-2011 Asst. Laboratory Instructor Mount Allison University

Education

M.A. Geography University of Guelph

B.Sc. Biology Mount Allison University

Years of Experience

2

Professional Affiliations

Professional Member Society for Conservation Biology

> Bronze Member Ontario Nature

Training and Certifications

Assistant Guide Commercial Bear Viewing Association of British Columbia 2015-present

Wilderness First Responder Wilderness Medical Associates 2016-2019

PADI Open Water Diver 2010-present **Solutions**

Allie Mayberry, M.A., B.Sc

permits for project works on Magnetawan First Nation reserve land, under the *First Nations Land Management Act*.

Environmental Management Plan for Magnetawan First Nation. March – June 2017

Project Contributor. Contributed to the development of an Environmental Management Plan for Magnetawan First Nation, as per *First Nations Land Management Act* requirements. Wrote Environmental Operating Guidelines and Standards, summaries of regulations, and community initiatives/strategies pertaining to natural resource management (aggregates and forestry).

Technical Review of the TransCanada Energy East Pipeline Project Environmental Site Assessment for Mi'gmawe'l Tplu'taqnn Incorporated Technical Reviewer. Contributed to technical peer review of the project environmental review report pertaining to Wildlife & Wildlife Habitat and Terrestrial Vegetation & Wetlands, considering the rights and interests of Mi'gmawe'l Tplu'taqnn Incorporated.

Additions to Reserve Land Occupancy and Use Study for Manitoba Metis Federation

2017-Present

Project Coordinator. Coordinating logistics and managing data for a project including approximately 40 land use and occupancy and oral history surveys. Main tasks include coordinating schedules and travel for field research, preparing and planning materials and data collection equipment, managing data, and coordinating data analysis.

Traditional Knowledge Gathering Training Course for Anishinabek/Ontario Fisheries Resource Centre

December 2016 - February 2017.

Project Coordinator. Helped project trainers prepare course materials, coordinate field logistics, and deliver a 2-day TK gathering training course for upwards of 30 AOFRC personnel and regional First Nation community representatives.

Federal Regulatory Review of Canadian Environmental Regulatory Processes December 2016.

Project Support. Provided writing support for regulatory reviews of the Canadian Environmental Assessment Act and Fisheries Act on behalf of clients including the Manitoba Metis Federation and Magnetawan First Nation.

Mi'gmaq Indigenous Knowledge Study for Mi'gmawe'l Tplu'taqnn Incorporated and Pabineau First Nation. 2016 – Present

Transcriber and Data Analyst. Provided audio file transcription and data analysis services on a project including upward of 70 land use and occupancy and oral history surveys. Transcription and data analysis phases of this project are currently complete; data verification and final report drafting in progress. Results will be used by Mi'gmaq leadership in negotiations with TransCanada Pipeline Ltd. around Energy East development

Allie Mayberry, M.A., B.Sc

Peer-Reviewed Publications

Mayberry, A. L., Hovorka, A. J., & Evans, K. E. (2017). Well-Being Impacts of Human-Elephant Conflict in Khumaga, Botswana: Exploring Visible and Hidden Dimensions. *Conservation and Society*, *15*(3), 280.

Rachel Speiran, M.A. Senior Community Development and Socio-economics Consultant, Shared Value Solutions Ltd.

Overview

For over 13 years, Rachel's work has centered around social, cultural and economic issues related to sustainable community development. After an internship with an environmental NGO in South America, Rachel focused on the community and intercultural aspects of land, resources and environmental issues. At the University of British Columbia's Centre for Intercultural Communication she designed programs and applied evaluation methods for international development and cross-cultural relations courses. At Rescan Environmental Services Ltd., she was the firm's first community engagement specialist, where she designed and managed community consultation programs; socio-economic impact assessments; and supported the integration of Indigenous knowledge into environmental assessments of major mining and energy projects in northern British Columbia - work which she continued with her own consultancy for five years in Ontario and BC until joining forces with Shared Value Solutions.

Currently, Rachel leads projects with the objective of protecting and advancing Indigenous rights and interests into land and resource management and sustainable community development. She has conducted socio-economic studies, impact assessments, third party technical reviews in PEI, New Brunswick, Ontario, Manitoba, and New Brunswick and has conducted multiple technical reviews of socio-economic impact assessments to support Inuit Impact and Benefit Agreements on behalf of the Kitikmeot Inuit in Nunavut for major mining developments.

Specialties

Socio-economics | community well-being and sustainable community economic development | cultural diversity and resilience | intercultural relations and communication | adult education | mental health

Contact

rachel.speiran @sharedvaluesolutions.com (226) 706 8888 ext. 120

> 62 Baker Street Guelph, ON N1H 4G1

Professional History

2015 – Present Senior Community Development Consultant Shared Value Solutions

2010 – 2014 Community Stakeholder Engagement and Socio-economic Impact Assessment Consultant Speiran Consulting

2006 – 2010 Socio-economic Scientist and Community Engagement Specialist Rescan Environmental Services Ltd.,

Selected Experience

Mushkegowuk All Season Road Socio-economic Study and Route Alternatives Evaluation. Mushkegowuk Council and Morrison Hershfield. James Bay Mushkegowuk Territory.

2015-present

Project Director and Senior Socio-economic Impact Assessment Specialist. Developed and facilitated community socio-economic and wellbeing 'scoping' focus groups; designed and lead feasibility study phase socio-economic baseline study and route alternative evaluation for a proposed new all-season road network connecting west coast James Bay communities to each other, and to the Ontario Highway Network. Supported community dialogue sessions that identified issues, interests and concerns that are currently informing decisionmaking processes regarding the proposed all season road and route.

Moderate Livelihood Study. Mi'kmaq Confederacy of Prince Edward Island (MCPEI)

January – June 2017

Project Director. Senior Socio-economic Researcher. Designed and conducted a study to establish a community driven understanding and key indicators of a 'Moderate Livelihood' as it relates to Atlantic Indigenous fisheries, sustainable economic development and community wellbeing. Implemented mixed method study approach through a literature review and community interviews with the Mi'mag First Nations of PEI.

Line 21 Pipeline Replacement Project. Technical Review, NEB Regulatory Process Support and Traditional Knowledge and Land Use Study. Liidlii Kue First Nation (LKFN). NWT.

May 2017–October 2017

Project Director. Oversaw the multidisciplinary technical review of Enbridge's Line 21 Pipeline Replacement Project's environmental assessment (EA). Results of the review were brought forward into the development of LKFN's evidence submission to the National Energy Board (NEB). Facilitated the technical issue resolution process, working in collaboration with Dehcho First Nations with interests and concerns with the Project and legal counsel. Provided collaborative oversight with Liidlii Kue First Nation staff and community researchers to conduct a Traditional Knowledge and Land Use Study to identify Project related potential land and resource impacts to rights-holding community members. Results of this Study are currently being used in NEB and Mackenzie Valley Lands and Water Board (MVLWB) hearing testimonies and IBA negotiations with Enbridge.

Population, labour force and employment forecasting and socio-economic analysis. Confidential client, Nunavut.

2016-2017

Senior Socio-economic Researcher and Strategic Advisor. Designed socio-economic study, conducted 15-year Inuit population and labour force forecasting analysis, managed research team and provided support for mining related Inuit impact and benefit agreement (IIBA) negotiations. 2004 – 2006 Program Manager; Curriculum Designer and Instructor UBC Centre for Intercultural Communication

2002 – 2004 Instructor UBC Centre for Intercultural Communication

2002 – 2004 Teaching Assistant UBC, Department of Educational Studies

2000 – 2002 Whitewater Rafting Guide; Program Coordinator and Corporate Business Development Canadian Outback Adventure Company

Education

MA, Adult Education University of British Columbia 2004

BA, Psychology (Environmental Studies minor) University of Victoria 1998

Years of Experience

13

Socio-economic study regarding the proposed Energy East Project. Mi-gmawe'l Tplu'taqnn Incorporated.

2016-April, 2017

Project Manager and Senior Socio-economic Researcher. Designed and lead socio-economic study regarding New Brunswick Mi'gmaq social, cultural and economic values and interests that accompanied a wider Indigenous knowledge and land use study.

Energy East Pipeline Project Environmental and Social Assessment Independent Review. Grand Council Treaty #3. 2015 - 2016

Project Manager and Senior Socio-economic Impact Assessment Reviewer. Manage multi-disciplinary team of reviewers to evaluate adequacy of the ESA and identify impacts to Treaty #3 Aboriginal rights and interests; support Treaty #3 Grand Council in National Energy Board EA review process; community engagement and information sharing regarding the proposed project.

Greenstone Mine Project Environmental Assessment Technical Review. Aroland First Nation.

2016

Senior Socio-economic Assessment Reviewer. Evaluated the EA, identified impacts of concern and developed recommendations for addressing Aroland socio-economic issues and interests.

Environmental Assessment Technical review – Socio-economics, Traditional Knowledge, lands and resource use: BP Scotia Bassin Project. Mi-gmawe'l Tplu'taqnn Incorporated.

2016 - May, 2017

Senior Technical Reviewer. Reviewed and evaluated the adequacy of the socioeconomic, traditional knowledge and land use impact assessments the offshore drilling Project's EIS. Assessed whether information contained within the EIS reflected Mi'gmaq interests and values and whether Mi'gmaq Knowledge was considered in the EA process and environmental management plans. Developed information requests for the Proponent and recommendations to address information gaps, methodological weaknesses, and socio-economic monitoring measures, with focus on the protection of aquatic resource related socio-economic interests held by the New Brunswick Mi'gmaq. Supported the client's legal counsel to develop evidentiary support documents during the regulatory process and for the negotiation table.

Canadian Environmental Assessment Act (CEAA) and National Energy Board (NEB) Regulatory Reviews.

Atlantic Policy Congress.

November, 2016 – February, 2017

Project Manager, Senior Technical Review – Socio-economics. Managed multidisciplinary team of experts to review the CEAA and NEB Acts and processes; developed list of issues and recommendations as a resource tool to support the APC's members. Identified weaknesses in the Acts related to Indigenous socio-

Professional Affiliations

International Association for Public Participation (IAP2)

International Association for Impact Assessment (IAIA)

Society of Intercultural Education, Training and Research (SIETAR)

Training and Certifications

International Association for Public Participation (IAP2) Certificate 2011

Global Reporting Initiative (GRI) Sustainability Evaluation Certificate 2010

Non-Violent Communication (NVC) Workshop 2010

Certificate in Intercultural Studies 2003

Diversity in the 21st Century Workshop 2003

Conflict Resolution Workshop 2002

economics and community wellbeing and development recommendations to address issues.

Energy East Pipeline Project Environmental and Social Assessment Independent Technical Review. Mi-gmawe'l Tplu'taqnn Incorporated. November 2016 – May, 2017

Senior Socio-economic Impact Assessment Reviewer. Reviewed and evaluated adequacy of the proposed pipeline project's ESA's information, methods, and mitigation plans; identified issues, information gaps and potential risks to New Brunswick Mi'gmaq rights and interests; developed recommendations to address information gaps and issues related to culturally and regionally relevant socio-economic and community wellbeing values.

Sisson Mine Project Draft Comprehensive Study Report and Environmental Assessment Review. Mi'gmawe'l Tplu'taqnn Incorporated (MTI) 2016

Senior Socio-economic Assessment Reviewer. Evaluated the EA; conducted information gap analysis of the CSR, identified impacts of concern and developed recommendations for addressing MTI Mi'kmaq community socio-economic issues and interests.

Line 3 Pipeline Replacement Project Environmental and Socio-economic Assessment Independent Review. Manitoba Métis Federation. 2015

Senior Socio-economic Impact Assessment Specialist and Reviewer. Reviewed and evaluated the adequacy of Endbridge's Line 3 pipeline project's ESA and determined implications of impacts to MMF's Aboriginal rights and interests.

Magino Gold Project Environmental Assessment Third Party Technical Review. Métis Nation of Ontario.

2015

Senior Report Reviewer. Conducted a gap analysis of the socio-economic impact assessment for a major mining development in northern Ontario; identified issues and information requirements based on the Métis socio-economic values and baseline study information; made recommendations for study information requirements to represent Métis population surrounding the Project area.

Ekati Diamond Mine Jay Pipe Extension Project - Socio-economic Impact Assessment Third Party Technical Review and Gap Analysis. Kitikmeot Inuit Association. Cambridge Bay, Nunavut.

2015

Senior Report Reviewer. Conducted a gap analysis of the socio-economic impact assessment for a major mining development; identified issues and information requirements based on the Kitikmeot communities' socio-economic values and baseline study information; made recommendations for study modifications and proponent socio-economic monitoring plan commitments in preparation for public hearings.

Workshops, Seminars and Presentations Delivered

Two-Eyed Seeing: Contaminated Site Assessment and Management. St-Lawrence Rivers Institute Symposium. Cornwall, ON 2016

Guiding Change, Protecting What Matters: Community Based Planning and Impact Assessment for a Western James Bay All Season Road. Northern Planning Conference Presentation. Whitehorse, YK 2016

Intercultural Competency: Working Effectively Across Cultures Workshop for University of Concordia's Volunteer Abroad Program. Montréal, QC. Workshop Facilitator 2013

Multi-stakeholder Engagement and Intercultural Competence: Working Effectively Across Cultures in Global Engineering and Society. Engineers Without Borders, University of Concordia. Montréal, QC. Presenter 2013

Community Engagement and Community Driven Consulting: Beyond Business as Usual Symposium. McGill University Marcel Desautels Institute for Integrated Management. Montréal, QC. Panelist 2013

Community Engagement and Participatory Decision-Making: The Human Side of Sustainability – McGill University Marcel Desautels Business Conference on Sustainability. Montréal, QC Presentation 2012

Solutions

Back River Gold Project Socio-economic Impact Assessment Third Party Technical Review and Gap Analysis. Kitikmeot Inuit Association. Cambridge Bay, Nunavut.

2014

Senior Report Reviewer. Conducted a gap analysis of the socio-economic impact assessment for a major mining development; identified issues and information requirements based on the Kitikmeot communities' socio-economic values and baseline study information; made recommendations for study modifications and proponent socio-economic monitoring plan commitments in preparation for public hearings.

Aroland First Nation Socio-economic Impact Assessment, Aroland First Nation, Ontario.

2014

Research study plan and methodology consultant. Supported the creation of study methodology and survey questions; conducted report review.

Aboriginal and Regional Government Engagement Program Plan and Socioeconomic and Land Use Due Diligence Study for the Larder Lake Mineral Exploration Project. Goldfields Abitibi Exploration Ltd. Larder Lake, Ontario. 2012 - 2013

Advising Consultant and Senior Researcher. Created Aboriginal, land owner and regional government engagement program; provided support for the development and negotiation of community - proponent exploration agreements; conducted socio-economic and land use research to identify social, economic and land use values.

Economics, Community and Services Baseline Study and Impact Assessment for the Meikle Wind Energy Project, Pattern Energy (via Hatfield Consultants). Tumbler Ridge, BC.

2011, 2014

Researcher. Conducted research to identify economic, community and public services that would be potentially affected by the construction and operations of a wind energy development; assessed effects; developed recommendations for positive socio-economic effect enhancement plans and adverse effect mitigation plans.

Socio-economic Baseline study, Impact Assessment and Mitigation planning for the Narrows Inlet Run-of-River Hydroelectric Project (via Robertson Environmental Consulting). Sunshine Coast, B.C.

2011 - 2012

Study Coordinator and Senior Researcher. Coordinated an interdisciplinary team of social and environmental scientists to conduct a socio-economic and land use impact assessment; integrated the issues and interests identified by regional communities into assessment and socio-economic mitigation and benefit enhancement planning.

Cultural Impact and Impact and Benefit Agreement (IBA) case study and literature review; Cultural Impact Assessment Report for the KSM and Kitsault

Aboriginal Engagement, Consultation and Traditional Knowledge in Environmental Assessments – Western Aboriginal Law Forum. Vancouver, BC. Presentation 2009

Working Together Towards a Better Future – Minerals North Mining Conference. Smithers, BC. Workshop Facilitator 2008

Exploring Community Engagement in the Mining Industry – Women in Mining Network. Vancouver, BC Workshop Facilitator 2008

> Global Model, Local Needs: Challenges and Opportunities – SIETAR Europa Congress. Nice, France. Presentation 2005

Games and Experiential Learning: Professional Development for Intercultural Trainers SIETAR BC. Vancouver, BC. Workshop Facilitator 2005

Languages

English (Fluent) French (Conversational) Spanish (Functional)

Gold Mine Project Environmental Assessments. (via Rescan Environmental Services / ERM Group) Northwest BC.

2012

Senior Researcher and Contributing Report Writer. Reviewed focus group transcripts; identified themes, issues and values regarding Nisga'a Nation values and interests regarding cultural identity and connection to the land as it related to two proposed mining developments; provided third party review for IBA case study report.

Aboriginal-Public-Stakeholder Consultation Program Coordination; Socioeconomic Impact Assessment for BC Hydro's Northwest Transmission Line. Northwest B.C.

2007, 2009 - 2010

Consultation report and project information meeting material coordinator and researcher. Conducted social, economic, cultural and land use research for nine First Nation communities along the transmission corridor; peer reviewed and conducted effects assessment reports; supported the integration of Traditional Knowledge studies and community consultation program results into the project's wider environmental assessment; acted as liaison with discipline leads; project management; proponent; partner consultants; Aboriginal impact and benefit agreement negotiators.

Public, Stakeholder and First Nations Consultation Program Coordination and Socio-economic/land use impact assessment for Pacific Booker Mineral's Morrison Mine Project. Northwest BC.

2007 - 2009

Developed consultation program; tracked, monitored and facilitated issue resolution process; coordinated community project information meetings; conducted land owner and user interviews; wrote consultation and socio-economic report for the Project's environmental assessment application.

Community Engagement and Consultation Program Plan. Researcher and Program Plan for BHP Billiton's Jansen Potash Project, Saskatchewan. River Project.

2009

Conducted community, land tenure and use research to support the development of the proponent's consultation program.

Economics Baseline Study and Impact Assessment for the Wildmare Wind Energy Project, Finavera Renewables (via Teco Natural Resources Group). Chetwynd, BC.

2010

Researcher. Conducted research to identify regional economic profile and effects assessment related to the construction and operations of a wind energy development; developed recommendations for positive socio-economic effect enhancement plans and adverse effect mitigation plans.

First Nations Environmental and Cultural Monitoring Program for Advanced Mineral Exploration Program. Goldfields Exploration Canada. North Central BC. 2009

Program Developer, Coordinator and First Nations Liaison. Developed First Nations engagement program; acted as multi-party First Nation liaison; identified values and interests for three communities; developed and coordinated multi-First Nation environmental and cultural monitoring program which included a training and knowledge exchange component between Elders, youth and geologists.

Third Party Technical Review of Environmental Assessment for Pristine Power's Mackenzie Green Energy Project (Biomass-powered electrical facility). Treaty 8 Tribal Association. Northeast BC. 2008

Interdisciplinary Study and Report Coordinator, First Nations and Government Liaison. Coordinated multi-disciplinary technical review of project's environmental assessment; wrote gap analysis and project information requirement report; acted as liaison with Treaty 8 First Nations representatives, the Treaty 8 Tribal Association, and BC Environmental Assessment Office.

Socio-economic and Land Use Baseline Studies and Impact Assessment; First Nations and Public Engagement Program for Seabridge Gold's Kerr-Sulphurets-Mitchell (KSM) Gold Project. Northwest BC.

2008 - 2010

Conducted social, economic, cultural and land use research for First Nations and non-Aboriginal communities surrounding the proposed project; developed and coordinated First Nations engagement and consultation program.

Socio-economic and Land Use Baseline Study and Impact Assessment; Community Engagement Program for Pacific Booker Minerals' Morrison Copper Gold Project. Northwest BC

2007 - 2008

Conducted social, economic, cultural and land use research for First Nations and non-Aboriginal communities surrounding the proposed project; conducted effects assessment on identified socio-economic and cultural valued components; developed recommended socio-economic benefit enhancement and social management plans; developed and coordinated First Nations engagement and consultation program.

Design, Management and Facilitation of academic, corporate and community intercultural communication training courses for UBC Centre for Intercultural Communication. Vancouver, B.C.

2003 - 2006

Program Manager, Curriculum Designer, Instructor. Managed the Certificate in Intercultural Studies Program; Designed curriculum for, and facilitated, community intercultural and diversity training programs; coordinated corporate intercultural briefing programs for international assignments; facilitated teaching and communication skills courses international teaching assistants; instructed intercultural communication to international corporate executives.

Culture, Communication and Development Course, Certificate in International Development. University of British Columbia's Centre for Intercultural Communication.

2007 – 2015

Course Facilitator. Facilitate course participants through intercultural, communication and critical theories and assignments; guide group discussion regarding the impact of cultural differences, worldviews and power dynamics in development projects and organizations.

Bernard Lebeau Aquatic/Fisheries Biologist 35 Suburban Drive, Mississauga, ON L5N 1G7 Cell: 416.885.5847 Lebeau.And.Associates.On@gmail.com

Dr. Lebeau is an environmental consultant specialized in aquatic habitats and ecotoxicology with 20+ years of experience. He provides management and technical services with urban, rural and natural environment studies to the complete life-cycle of industrial, government and residential/commercial projects. He has conducted environmental assessments (EAs) for all types of proposed infrastructure and facilities (Federal and Provincial EAs), Environmental Effects Monitoring (EEMs; Metal Mining, Pulp & Paper, Nuclear Stations), Environmental or Ecological Risk Assessments (ERAs), supported studies for Phases 1 and 2 site assessments, involving environments related to water (surface and ground), soil and sediment, contaminants and fate, invertebrates, fish and fish habitat, as well as vegetation and wildlife, and aquatic, terrestrial and wetland habitats. He has developed environmental mitigations, restoration and compensation strategies which through negotiations environmental permits and approvals were obtained in response to potential impacts.

EDUCATION

- Ph.D. Aquatic/Fisheries Sciences, University of Toronto, 1992 (Post-Ph.D. to 1994)
- M.Sc. Aquatic/Fisheries Sciences, Université de Montréal, 1984
- B.Sc. Biologie, Université de Montréal, 1979
- College Diploma in Pure & Applied Sciences, Collège de Rosemont, 1977

AFFILIATIONS

- Society of Environmental Toxicology & Chemistry (SETAC)
- Canadian Institute of Mining, Metallurgy, and Petroleum (CIM)
- 20+ years with various societies, including American Naturalist and American Fisheries Society

SKILLS / CERTIFICATIONS

- OPG Security Clearance Valid to 04/14/2021
- Confined Space Awareness Training (2015)
- Workplace Hazardous Materials Information System (WHMIS 2015)
- MNR Class 1 Electrofishing Certificate (Ontario)
- ROM Fish ID (Ph.D. Teacher Assistant)
- MNR Stream Assessment Protocol (Ontario)
- MNR Data Sensitivity Training (Ontario)
- Ecological Risk Assessment (ERA) under SETAC
- Canadian Aquatic Bio-monitoring Network (CABIN)
- Ecological Land Classification (Ontario ELC)
- First Aid, CPR, MED A3, Pleasure Craft Operator
- Coaching and Teambuilding Skills / Conflict Resolution Skills for Managers and Supervisor
- Valid Class "G" Ontario Driver's License

LANGUAGE (FLUENT; WRITTEN AND SPOKEN)

• Both English and French. Public Services Canada SLE tests - reading and writing both at level E (top grades)

EMPLOYMENT HISTORY

2014-now	Lebeau & Associates Inc. – Environmental Scientists (was Lebeau Sanders Environmental Inc.)
2004-2014	SENES Consultants Limited (Arcadis since 2013) - Environmental Scientist
2000-2004	AMEC Earth & Environment - Environmental Scientist
1997-2000	Ecological Services Group (ESG; Stantec since 2000) - Environmental Scientist
1993-1997	BAR Environmental (BAR; Stantec since 2000) - Coordinator/ Environmental Scientist

ENERGY SECTOR (SELECTED)

Fisheries Habitat Monitoring Program at Okikendawt Hydroelectric facility for Hydromega, French River, Ontario (2017-2018). Hydromega and Dokis First Nation developed a 10 MW run-of river hydroelectric project near Portage Dam on the French River. The monitoring program that was performed included: (1) the assessment of Lake Sturgeon use of the enhancement areas for spawning through a series of methods including netting, egg mats and visual observation; (2) undertake a fish community monitoring study; and (3) verify the stability of the habitat enhancements. The report is currently underway. Ecological Land Classification and Species at Risk Assessment at the CHR Property, Mississauga Cement Plant (2017-2018). Completed the field work and mapping for an Ecological Land Classification and Species at Risk Assessment for the CHR property in Mississauga. The report is currently underway. Class EA Studies for NextBridge Infrastructure (NextBridge, 2012-2013). Project terrestrial and aquatic/fisheries study design and planning/reporting for the East-West Tie Line Expansion (East-West Tie). The East-West Tie was a 400 km double-circuit 230 kV electrical transmission line between Thunder Bay and Wawa. Project delivery was provided on the project's first year with study design requirements, including Fisheries Act and Species At Risk Act applications, presentation and negotiation with the provincial government. Class EA Studies for Hydrodams, Ontario Power Generation (2008-2010). Completed fieldwork and Class EA reports (either terrestrial or aquatic or both) for new power houses as well as upgrading hydrodams and powerhouses, including the transmission lines to sites for Ontario Power Generation (OPG) at Wawaitin, Hound Chute, Sandy Falls, Lower Sturgeon, and Matagami Lake Dam generating stations. Class EA Studies for Transmission Lines, Hydro One (2005-2011). Performed field work, mostly based on the Ecological Land Classification (ELC) and Species at Risk searches, and prepared the Class EA sections for Hydro One for several projects. CEAA Studies, Shell Canada, Sarnia (2010-2011). Peer-reviewed documents on terrestrial and aquatic aspects of the CEAA reports for the development of a larger Shell Canada refinery near Sarnia. CEAA Studies, Ontario Power Generation (OPG) (2010-2012). Various peer-reviewed documents over time on aquatic aspects of the CEAA reports for Darlington, Pickering and Bruce Nuclear on thermal effects on fisheries. Class EA Studies, GE Hitachi Nuclear Energy (GEH), Peterborough (2009). Prepared the aquatic Class EA section for the expansion of the General Electric – Hitachi Nuclear Facility in Peterborough. Halton Hills Co-Generating Station, TransCanada Energy. Completed the field work, including the Ecological Land Classification (ELC) over three seasons and the fish surveys for Redside Dace along with the preparation of the Environmental Review Report (ERR) provided as the EA for the Station (HHGS) for TransCanada Energy Ltd. (TCE). It included a description of the facility, the affected environment, the effects that may result from the undertaking, proposed mitigation and monitoring measures and the net effects of the project. Consultation with the public, interested parties and agencies was also undertaken. Bradford West Gwillimbury Co-Generating Station, TransCanada Energy, Ontario. Performed field work, based on the Ecological Land Classification (ELC) and Species at Risk searches. An EA was conducted for the proposed Station (BWGGS), a 400 MW natural gas fueled, simple cycle power generating station. The proposed BWGGS was subject to the environmental screening and review process requiring the completion of an Environmental Review Report (ERR). The ERR included a description of the existing site conditions, the proposed undertaking; potential impacts: and final mitigation. Consultation with the public, agencies and other interested stakeholders was also undertaken.

MINING / PULP AND PAPER SECTOR (SELECTED)

Aquatic Environmental Effects Monitoring (EEM), Tahoe Resources Bell Complex, Timmins, Ontario (2016-2018). Completed the Phase 3 field work of the EEM program of Environment Canada for the mine site. The large EEM Biological Interpretive Report is currently underway. EA, Avalon Advanced Materials, Separation Rapids, English River, Ontario (2017-2018). Completed the water and sediment quality surveys, invertebrate and fisheries surveys at the lithium exploration site to update the existing environmental assessment report to be submitted in 2018. EA, Frontier Lithium, 200 km north of Red Lake, Ontario (2017-2018). Completed comprehensive water quality, sediment quality, invertebrate and fisheries surveys at the lithium exploration site. Plans are currently being made for the data analysis and EA report preparation. EEM, Snow Lake Mine, QMX (now Hudbay), Manitoba (2004-2016). Completed the 4 Phases (3 years per phase), Phases 1, 2, 3 and 4 EEM program of Environment Canada for the mine site in Manitoba. Each phase included three Effluent and Water Quality Annual Reports, along with field work of effluent dilutions into receiving waters, a Study Design Report and the large EEM Biological Interpretive Report. EA, Rainy River Resources Ltd. (2013-2014). Peer reviewed EA main document and supporting documents, with an emphasis on environmental aspects, fish and fish habitats for First Nations. Fish and Fish Habitats, and EEM, Cumberland Resources Ltd, Nunavut (2010-2011). Peer-reviewed documents. with an emphasis on environmental aspects, including effluent discharges and mixing zones, fish and fish habitats, and the EEM programs at Meadowbank Gold Project. Fish and Fish Habitats and EEM, ESSAR Steel Algoma, Wawa Mines (2005-2012). Peer-reviewed documents, with an emphasis on environmental aspects, including fish and fish habitats, effluent discharge and dilution modelling, the EEM program and negotiation with the provincial government. Stonewater Resources, Talc-Magnesite Project, Timmins (2010-2011). Completed three field periods of data gathering at numerous sampling stations and produced sections of the EA document. EA, Princess Colliery, Sydney Coal Mines, Nova Scotia (2004-2011). Prepared the closure plan, a discussion paper, and a gap analysis, for the rehabilitation of areas of the Princess Colliery, Sydney Coal Mines, Nova Scotia. EEM field work and reporting was performed from 2008 to 2010 as part of the closure plan. Ecological Risk Assessments (ERA) at various mine sites on Great Bear Lake, NWT for the Department of Indian and Northern Affair Canada (INAC: 2004-2012). Performed aquatic surveys (invertebrates, sediment and water chemistry), data analyses and reporting as part of ERAs for various closure plans at mine sites on Great Bear Lake, NWT including Sawmill Bay Mines, Silver Bear Sites, and Contact Lake Mines. CEAA Studies, Cameco Corporation, Blind River and Port Hope Facilities (2006-2012). Performed CEAA studies to decommission and construct new facilities in Port Hope Harbour and a new incinerator at Blind River to increase production at Cameco (Project Vision 2010). CEAA Studies, Mississauga Metals & Allovs, Brampton (2008). Performed CEAA studies for a low-level radioactive waste incinerator in Brampton. CEAA Studies at Waste Management Facilities, Low-Level Radioactive Waste Management Office, Atomic Energy of Canada Limited (AECL; 2002-2004). Produced two CEAA studies on the Port Granby and the Port Hope facilities as part of the Port Hope Area Initiatives (PHAI). ERAs at Waste Management Facilities (low-level radioactivity sites), Cameco Corporation, Port Hope and Port Granby (2010-2011). Completed effluent, water and sediment quality studies, including effluent toxicity and effluent dilution and plume studies at the Welcome and Port Granby Waste Management Facilities (low-level radioactivity sites) for Cameco, Port Hope, under the request of the CNSC. ERA at Cameco Corporation, Blind River (2008). Under the request of the CNSC, performed effluent plume delineation on a multi-stage diffuser using CORMIX modelling with field validation and sediment quality sampling (including radionuclides) at the Cameco Refinery, Blind River in the North Channel, Lake Huron. ERA, Rio Algom, Poirier Mines, Québec (1995-2001). Performed a large ERA for Rio Algom, Poirier Mines, Quebec, on existing and future effects of acid mine drainage (AMD) for several options of a closure plan. Studies were based on fieldwork, field and modelling data, and reporting based on over 30 sampling stations over several years and all seasons. Water and sediment quality and their predicted effects to the invertebrates were used in a Triad Approach (Peter Chapman's approach) to quantify risks. Hydrological modelling predicted metal ion concentrations in surface waters. EEM, Quebec, Ontario and Maritimes (1994-2004). While working at BAR, ESG and AMEC, I have either coordinated or managed or both over 60 EEM studies, which all included effluent mixing zones as modelled by CORMIX or the Mass Balance Equation, and field validation, impacts of effluent on sediments, waters, fish and invertebrate communities (both French and English reports). Clients included Noranda, Domtar-E.B. Eddy, Abitibi-Price, Kruger, etc.

DEVELOPMENT SECTOR (SELECTED)

EA, Canadian Tires, Brockville, Ontario (2017). Completed the field work and reporting for an Ecological Land Classification, a Species at Risk assessment, and the Environmental Impact Assessment for a property located in Brockville for Canadian Tires. EA, Brookfield Homes, Ontario (2008-2012). Performed field work, based on the Ecological Land Classification (ELC) and Species at Risk searches. Prepared an EA for the high-rises development by Brookfield Homes on Whitby Harbour. A DFO habitat compensation plan was produced and negotiated successfully. Habitat compensation was based on a multi-species fish spawning and nursery habitat to be built adjacent to the development. ERAs and Screening-level Biological Assessments, Various Clients (2008-2012). Completed several screening-level biological assessments of properties owned by developers or governments as part of ERAs, which included endangered species and (critical) habitat evaluations and mapping. Among sites are a Scarborough property owned by University of Toronto, a Ganaraska property managed by SNC Lavalin, a Hamilton property for the PanAm Games, a Collingwood property formerly owned by Goodyear Plant, and a site in Pukaskwa National Park. Water Quality and Invertebrate Study Design, Grand Forest Products. Prepared an updated a water quality, contaminants dilution and invertebrate study design for landfills and industrial lands based on past studies and current request by MOE. State of Knowledge Reports, Guyana Environmental Protection Agency. Completed various water quality reports for the Guyana EPA, including a State of Knowledge (SOK) report. EA Peer Review, National Energy Corporation of Trinidad & Tobago. Provided peer review of EA documents on works and activities, and mitigations on marine and aquatic components for a major development design proposal on West End, Grand Bahama Island, as well as identification of issues for emissions, mitigation and remediation for the National Energy Corporation of Trinidad & Tobago.

GOVERNMENT STUDIES (SELECTED)

Fisheries Study of the Minisinakwa Lake Tributaries and Bays, Gogama, Ontario For Environment and Climate Change Canada (2017). In 2015, a train derailed near the town of Gogama, Ontario releasing crude oil into the Makami River. It is believed this derailment has impacted the fish community in this river and surrounding area. A fisheries study was performed on four tributary bays of the Minisinakwa Lake to determine he health condition of the fish community from these waterways. Canada-wide Strategy for the Management of Municipal Wastewater Effluent - Environmental Risk Assessment Standard Method for CCME (2009). Authored the Technical Supplement 3, a national strategy for the management of municipal wastewater effluent endorsed by the Federal Government and most provinces. The CCME strategy establishes minimum performance standards for all municipal wastewater plants operating within Canada, which is a guidance to facility owners to conduct a sitespecific assessment to determine the level of environmental risk imposed by the effluent discharged by every plant and determine performance standards. Eastern Passage WWTF Outfall, Halifax Regional Water Commission (2012-2013). Wastewater outfall design alternatives were evaluated through a mixing zone analysis to ensure compliance with effluent quality objectives (EOO) and effluent discharge objectives (EDOs) established by CCME (above). ERAs for Halifax, Dartmouth, Herring Cove and Mill Cove WWTF for Halifax Water (2013). Same as the previous project. ERAs on contaminated Great Lakes harbours for PWGSC and DFO (2008-2012). Produced ERA documents based on sediment quality, invertebrate data and sediment bioassays for PWGSC and DFO for contaminated Great Lakes harbours and one island station; Gore Bay, Silver Water, Lion's Head, Bayfield and Wheatley Harbours, and Lonely Island. Durham York Waste Incinerator, Clarington (2008). Peer-reviewed documents for the development of the Durham York Waste Incinerator, with an emphasis on aquatic environment. Class EA, Mississauga (2005-2006). Performed the environmental components (terrestrial and aquatic) of the Class EA needed to update the existing sewer system and pumping station in the Rattray Marsh (provincially significant wetland) and Jack Darling Park.

CURRICULUM VITAE

Margaret E. Walsh, Ph.D., P.Eng.

Professor Department of Civil & Resource Engineering Dalhousie University 1360 Barrington St., Bldg. D, Rm.D215 Halifax, NS, B3J 1Z1 (902) 494 8430 (office), (902) 494 3105 (fax) <u>mwalsh2@dal.ca</u> (email)

EDUCATION

2002-05	Ph.D., Civil Engineering Dalhousie University, Halifax, NS, Canada
1993-94	M.Eng., Chemical Engineering, Pulp & Paper Center McGill University, Montreal, QC, Canada
1990-93	B.Eng., Chemical Engineering Technical University of Nova Scotia, Halifax, NS, Canada
1988-90	Diploma in Engineering

St. Francis Xavier University, Antigonish, NS, Canada

ACADEMIC EXPERIENCE

2017 – Present	Professor Department of Civil & Resource Engineering Dalhousie University, Halifax, NS, Canada
2010 – 2017	Associate Professor Department of Civil & Resource Engineering Dalhousie University, Halifax, NS, Canada
2005 - 2010	Assistant Professor Department of Civil & Resource Engineering Dalhousie University, Halifax, NS, Canada
2001 – 2005	Sessional Instructor Faculty of Engineering, Dalhousie University, Halifax, NS Engineering Department, St.F.X.U., Antigonish, NS, Canada

PROFESSIONAL WORK EXPERIENCE

1994 – 2001District Technical Representative
BetzDearborn Canada Inc., Halifax, Nova Scotia

TEACHING EXPERIENCE

Dr. Walsh's teaching in the Civil and Resource Department at Dalhousie University over the last 15 years has involved instructing 4th year and graduate student level environmental engineering courses. The two primary undergraduate courses she teaches are *Water & Wastewater Treatment* and *Solid Waste Management*. At the graduate level, Dr. Walsh alternates between offering *Water Treatment Plant Design* and an *Advanced Wastewater Treatment* course each year.

RESEARCH INTERESTS & CONTRIBUTIONS

Contribution A: Advanced Technologies for Drinking Water Treatment & Optimized Finished Water. Research in this area since 2010 has focused primarily on advanced phys-chem technology development for natural organic matter (NOM) removal in drinking water systems and investigations into potential unintended consequences of water treatment changes on distribution system water quality. Specifically, research studies with my group have involved (1) development of ion exchange (IX) technology for enhanced removal of NOM and DBP precursors (J12, C4, C11, C16, C34, TR1), (2) development of advanced online monitoring tools for enhanced NOM removal (IND1, C12, C35) and (3) studies to determine potential impacts of chemistry shifts in finished water on corrosion in the distribution system (J4, J11, C10, C13, C15, C36, UR1). Through collaborations with local and national engineering consulting firms and local municipalities, my research team has contributed to advancing the uptake of IX technoleogy for full scale designs, which is not commonly employed in the Canadian drinking water industry. Students in my research group have had the opportunity to work with local engineering consulting companies on technology optimization and full-scale designs for several local municipalities through contract bench and pilot-scale studies. The field work completed to date to investigate the use of online UV254 and streaming current monitors for coagulation process control development in drinking water plants has been of great interest to the water industry. Results of this research have been presented at both local and national drinking water conferences. This research theme has been funded by NSERC, Canadian Water Network (CWN) and private sector research contracts, and has involved training of 10 HQP in total

Contribution B: Treatment Strategies for Industrial Wastewater.

My research group has been conducting studies in this area related to acid mine water, produced water from oil and gas operations and oily wastewaters since 2007. We have proven that waste by-product material (cement kiln dust (CKD)) is a viable option for the treatment of acidic wastewaters in active treatment systems (J16) and conducted studies to examine the use of adsorbents in hybrid CSTR designs that may offer advantages over traditional fixed-bed column reactor designs. Research in this theme over the last 6 years has been focused on (1) high rate clarification processes for mine water treatment (J3, J5, J7, C2, C3, C5) (2) coagulation/adsorption studies for produced water treatment from offshore oil and gas production in Atlantic Canada (J1, J6, J8, J9, C1, C17, C18, C19, C38) and (3) collaborative research to study impacts on receiving waters of industrial activity (J2) and membrane technology for oily wastewater treatment (C14).

research has focused on the characterization and investigation of treatment technologies for industrial stormwater run-off, specifically in the power generation sector (C9, C33). This research theme has been funded by the *Portland Cement Association, Cement Association of Canada, Petroleum Research Atlantic Canada (PRAC),* private sector research contracts *and NSERC,* and has involved training of 7 HQP in total.

Contribution C. Wastewater Management Strategies for Municipal Systems

The primary objective of this research area is to provide new information to the drinking & wastewater industry regarding the potential to reclaim waste residual and wastewater effluents for reuse applications. Research conducted by my group during the start-up stage of my position at Dalhousie University and primarily published and presented prior to 2010 focused on expanding on my PhD work examining the potential impacts of recycling waste filter backwash water (FBWW) on main treatment train efficacy and finished water quality (J19, J21) and efforts in this area led to award of a research contract with the American Water Works Association (AWWA) to conduct a North American survey of full-scale WTP residual treatment installations (TR3) that was invited for presentation (C53). More recent research over the past 6 years and current focus of two of my graduate students today is centered on municipal wastewater treatment systems where there exists opportunities to advance our knowledge base on reclamation strategies for the recovery of water for non-potable reuse management strategies (C3). This research theme has been funded by NSERC, the Canadian Water Network (CWN), AWWA and local municipalities and has involved training of 11 HQP in total.

PUBLICATIONS AND CONFERENCE PROCEEDINGS

(Abridged 2012-present; over 100 publications since 2004; HQP contributions in italics)

Refereed Journal Publications

- *J1. Younker, J.M.* and **M.E. Walsh** (2016) Effect of adsorbent addition on floc formation and clarification, *Water Research*, **98**(7): 1-8.
- J2. MacAskill, D.N., Walker, T.R., Oakes, K. & M.E. Walsh (2016) Forensic assessment of polycyclic aromatic hydrocarbons at the former Sydney Tar Ponds and surrounding environment using fingerprint techniques, *Environmental Pollution*, 212: 166-177.
- J3. Mackie, A.L., Laliberté, M. and M.E. Walsh (2016) Comparison of single and twostage ballasted flocculation processes for enhanced removal of arsenic from mine water, ASCE Journal of Environmental Engineering, 142(2): 04105062.
- J.4 Sharafimasooleh, M., Rand, J.L. and M.E. Walsh (2016) Effect of high chloride concentrations and pipe material on chlorine disinfection efficacy and corrosion in distribution systems, ASCE Journal of Environmental Engineering, 142(2): 04015061.

- J.5 Mackie, A.L. and M.E. Walsh (2015) Investigation into the use of cement kiln dust in high density sludge (HDS) treatment of acid mine water, *Water Research*, 85(11): 443-450.
- *J.6 Younker, J.M.* and **M.E. Walsh** (2015) Impact of salinity and dispersed oil on adsorption of dissolved aromatic hydrocarbons by activated carbon and organoclay, *Journal of Hazardous Materials*, **299**(12): 562-569.
- *J.7 Mackie, A.* and **M.E. Walsh** (2015) Bench-scale comparison of conventional and high rate clarification treatment processes for acid mine drainage, Submitted for review in *Water Quality Research Journal of Canada,* **50**(3): 279-286.
- *J8. Younker, J.M.* and **M.E. Walsh** (2014a) Bench-scale investigation of an integrated adsorption-coagulation-dissolved air flotation process for produced water treatment. *Journal of Environmental Chemical Engineering*, **2**(1): 692-697.
- *J.9 Younker, J.M.* and **M.E. Walsh** (2014b) Impact of salinity on dissolved air flotation treatment for oil and gas produced water. *Water Quality Research Journal of Canada*, **49**(2): 135-143.
- J.10 Pei, W.W., Xie, X., Phuong, O., Trueman, B.F., McVicar, M.M., Walsh, M.E. and G.A. Gagnon (2013) Water Reclamation and Reuse, 2013 Literature Review, *Water Environment Research*, **85**(10): 1308-1321.
- J.11 Rand, J.L., *Sharafimasooleh, M.* and **M.E. Walsh** (2013) Affect of water hardness and pipe material on enhanced disinfection with UV light and chlorine. *Journal of Water Supply: Research & Technology – AQUA*, **62**(7): 426-432.
- J.12 Anderson, L. and M.E. Walsh (2012) Evaluation of temperature impacts on drinking water treatment efficacy of magnetic ion exchange and enhanced coagulation. Journal of Water Supply: Research & Technology AQUA, 61(7): 403-412.
- J.13 Lamsal, R., Montrueil, K.R., Kent, F.C., Walsh, M.E. and G.A. Gagnon, (2012) Characterization and removal of natural organic matter by an integrated membrane system, *Desalination*, **303**(1): 12-16.
- J.14 Lamsal, R., Chaulk, M., Zevenhuizen, E., Walsh, M.E. and G.A. Gagnon (2012) Fouling behavior in nanofiltration membrane: A case study of bench- and fullscale results of two surface source waters Journal of Water Supply Research and Technology- AQUA, 61(5): 291-305.
- J.15 McVicar, M., Anderson, L., Zevenhuizen, E., Mackie, A.L., Walsh, M.E. and G.A. Gagnon (2012) Water Reclamation and Reuse, 2012 Literature Review, Water Environment Research, 84(10): 1332-1346.
- *J.16 Mackie, A.L.* and **M.E. Walsh**. (2012) Evaluation of cement kiln dust (CKD) as a replacement for lime in active mine water treatment, *Water Research*, **46**(2): 327-334.

Industry Publications

IND1. McVicar, M., Bickerton, B., Chaulk, M. and M.E. Walsh (2015) UV254 & streaming current monitors can improve coagulation control in challenging conditions, American Water Works Association Opflow, 41(7): 22-24. Available online www.awwa.org/opflow. (Invited publication)

Refereed Conference Proceedings (with full paper)

- C1. Younker, J. and M.E. Walsh (2016) Clarification of hybrid adsorbent coagulated floc particles by DAF for enhanced treatment of petroleum industry wastewater, *Flotation 2016*, 7th Annual IWA Conference on Flotation for Water and Wastewater Systems, Toulouse, France, September 26-30, 2016.
- C2. Mackie, A. and M.E. Walsh (2013) Evaluation of high-rate clarification processes for mine water treatment with cement kiln dust, 23rd World Mining Conference, Montreal, QC, Aug 11 – 15, 2013.
- C3. Mackie, A., Laliberte, M., Couture, M. and M.E. Walsh (2013) Two-stage treatment of high arsenic mine water at cold temperature using ballasted flocculation, 23rd World Mining Conference, Montreal, QC, Aug 11 15, 2013.

Conference Proceedings (Abstract reviewed with full paper)

- C9. Soumik, S.A. and M.E. Walsh (2018) Industrial Stormwater Run-Off Treatment: Impacts of Water Quality on Adsorption Capacity, CSCE Fredericton Canadian Society for Civil Engineering (CSCE) Fredericton, NB June 2018.
- C10. Sharafimasoolh, M., Rand, J.L. and M.E. Walsh (2015) Effect of high chloride concentrations on iron corrosion and release in cast iron systems, AWWA Water Quality and Technology Conference (WQTC), Salt Lake City, Utah, Nov 15-19, 2015.
- C11.. DiCicco, J., Anderson, L.E. and M.E. Walsh (2014) Pilot-scale study of magnetic ion exchange vs coagulation systems for removal of natural organic matter, American Water Works Association Annual Conference & Exposition (ACE 2014), Boston, Massachusetts, June 8-12, 2014.
- C12. McVicar, M., Bickerton, B.J., Chaulk, M. and M.E. Walsh (2014) Process control of coagulation processes with online water quality monitoring instrumentation. American Water Works Association Annual Conference & Exposition (ACE 2014), Boston, Massachusetts, June 8-12, 2014. (Awarded 1st Place in Poster Session.)
- C13. Sharafimasoolh, M., Rand, J.L. and M.E. Walsh (2014) Effect of high chloride concentrations on iron corrosion and disinfection efficacy in the distribution system. (Poster Presentation) American Water Works Association Annual Conference & Exposition (ACE 2014), Boston, Massachusetts, June 8-12, 2014.
- C14. Pei, W.W., Liu, L. and M.E. Walsh (2014) Evaluation of Oily Wastewater Treatment using Membrane Adsorption Bioreactors (MABR), 13th International

Environmental Specialty Conference, Canadian Society of Civil Engineers (CSCE) Annual Conference 2014, Halifax, Nova Scotia, May 28 – 31, 2014.

- C15. Sharafimasooleh, M., Rand, J.L. and M.E. Walsh (2014) Effect of High Chloride Concentrations on Chlorine Disinfection Efficacy in Distribution System, 13th International Environmental Specialty Conference, Canadian Society of Civil Engineers (CSCE) Annual Conference 2014, Halifax, Nova Scotia, May 28 – 31, 2014.
- C16. Anderson, L.A. and M.E. Walsh (2013) Process monitoring for anion exchange treatment of surface waters for NOM removal, AWWA Water Quality and Technology Conference (WQTC), Long Beach, California, Nov 3 – 7, 2013.
- C17. Younker, J. and M.E. Walsh (2013) Novel Pre-treatment for Dissolved Air Flotation Treatment of Produced Water, Water Environment Federation's Annual Technical Exhibition and Conference, WEFTECH 2013, Chicago, IL, October 5 – 9, 2013.
- C18. Younker, J. and M.E. Walsh (2012) Bench-scale investigation of an integrated adsorption-coagulation-dissolved air flotation process for offshore produced water treatment, FLOTATION 2012 6th International IWA Conference on Flotation for Water and Wastewater Systems, New York City, NY, October 29 November 1 2012.

Conference Proceedings (Abstract reviewed)

- C33. Sadman, S.A. and M.E. Walsh (2018) Evaluation of Waste Slag to Remove Target Metals from Industrial Stormwater Runoff, American Water Works Association Annual Conference & Exhibition (ACE187) Annual Conference, Las Vegas, NV, June 11 – 14, 2018.
- C34. Sharafimasooleh, M., Huang, Y., Sadman, S., Rand, J.L. Truelstrup Hansen, L. and M.E. Walsh (2017) Impact of common corrosion control strategies on iron corrosion and release in presence of high chloride concentrations, American Water Works Association Annual Conference & Exhibition (ACE17) Annual Conference, Philadelphia, PE, June 11 – 14, 2017.
- C35. Fraser, M., Fahie, C. and M.E. Walsh (2015) Membrane technology for the treatment of secondary effluents from municipal wastewater systems, Atlantic Canada Water and Wastewater Association (ACWWA) Annual Conference, St. John's, NL, October 4-7, 2015.
- C36. DiCicco, J., Anderson, L., Rand, J.L. and M.E. Walsh (2014) From bench- to pilotscale: maximizing the returns from drinking water treatability studies. Atlantic Canada Water and Wastewater Association (ACWWA) Annual Conference, Halifax, Nova Scotia, October 19-22, 2014.
- C37. McVicar, M., Bickerton, B., Chaulk, M. and M.E. Walsh (2013) Using Advanced Online Instrumentation for Coagulation Process Optimization and Control. Atlantic Canada Water and Wastewater Association (ACWWA) Annual Conference, Fredericton, NB September 29 – October 1, 2013.

- C38. Sharafimasooleh, M., Rand, J.L. and M.E. Walsh (2013) Effect of high chloride concentrations on iron corrosion and disinfection efficacy in the distribution system, Poster Presentation, American Water Works Association Annual Conference & Exhibition (ACE) Annual Conference, Denver, CO, June 9 13, 2013.
- C39. Sharafimasooleh, M., Rand, J.L. and M.E. Walsh (2012) Impact of anionic ion exchange (AER) systems on disinfection processes and corrosion in the distribution system, Atlantic Canada Water and Wastewater Association (ACWWA) Annual Conference, Charlottetown, PEI, October 14-16, 2012.
- C40. Jaji, K., Younker, J.M. and M.E. Walsh (2012) Offshore produced water treatment: optimizing dissolved air flotation with coagulation and adsorption. Poster presentation, Nova Scotia Energy Research and Development Forum 2012, Halifax, Nova Scotia, May 16, 2012.
- C41. Lamsal, R., Chaulk, M., Zevenhuizen E., Walsh, M.E. and G.A. Gagnon (2012) Fouling behaviour in nanofiltration membrane: bench and full-scale study of two surface source waters, American Water Works Association (AWWA) Annual Conference & Exhibition (ACE12), Dallas, Texas, June 10 – 14, 2012.

Technical Reports

- TR1. DiCicco, J., Anderson, L. and M.E. Walsh (2013) Magnetic Ion Exchange (MIEX[®]) Pilot Study – Saint John Water, Final report submitted to Saint John Water, Saint John, NB, December 2013.
- *TR2.* **M.Walsh** (2009) Bench-scale MIEX[®] treatability study for Saint John Water. Final report submitted to *Saint John Water*, Saint John, NB, December 2009.
- TR3. N. McCormick, J. Younker, A. Mackie and M. Walsh (2009) Data review from fullscale installations for water treatment plant residuals treatment processes. American Water Works Association (AWWA) Technical & Education Council, Final report submitted to AWWA Residuals Management Research Committee and Water Treatment Plant Residuals Committee, December 2009.
- *TR4. Mackie, A.,* Walsh, M.E. and C.B. Lake (2009) Investigation into the use of cement kiln dust (CKD) for wastewater treatment, Portland Cement Association, PCA R&D Serial # M06-04.

Invited Presentations

C53. McCormick, N., Younker, J., Mackie, A. and M.E. Walsh (2010) Data review from full-scale installations for water treatment plant residuals treatment processes, American Water Works Association Annual Conference (ACE), Chicago, IL, USA, June 20-24, 2010.

- C54. Walsh, M.E. and C.B. Lake (2009) Acid mine effluent treatment with cement kiln dust (CKD): neutralization & precipitation capacity, Mining Society of Nova Scotia, Annual General Meeting, Dundee, Nova Scotia, June 4 6, 2009.
- C55. Walsh, M.E. and C.B. Lake (2008) Investigation into the Use of Cement Kiln Dust (CKD) for Wastewater Treatment. Portland Cement Association, Manufacturing Technical Committee Meeting, IEEE-IAS Cement Industry Technical Conference, Miami, FL, May 18 – 22, 2008.

CONTRACT RESEARCH SUMMARY

PROJECT TITLE AND FUNDING AGENT	FUNDING LEVEL AND DURATION
Bench-scale evaluation of septage chemical additives Dillon Consulting Ltd. – Research Contract	\$10,903 (2016) (Walsh 100%)
Treatment assessment for removal of chemical oxygen demand (COD) and total kjeldahl nitrogen (TKN) from lagoon effluent <i>Atlantic Industrial Services – Research Contract</i>	\$3,178 (2014) (Walsh 100%)
Bench-Scale Disinfection By-Products Study CBCL Consulting Ltd. – Research Contract	20,150 (2014) (Walsh 100%)
Water Treatment Plant - Coagulation Process Optimization Using Advanced Online Process Instrumentation NS Department of Environment	\$16,000 (2013-15) (Walsh 100 %)
Data Review from Full-Scale Installations for Water Treatment Plant Residuals Treatment Processes American Water Works Association (AWWA) TEC Funded Contract	\$23,750 (2009-10) (Walsh 100 %)
Bench-scale treatability study for Saint John Water Saint John Water, Saint John, NB	\$15,142 (2009-10) (Walsh 100 %)

RESEARCH GRANT SUMMARY

RESEARCH TEAM	PROJECT TITLE AND FUNDING AGENT	FUNDING LEVEL AND DURATION
M. Walsh	Investigation of the use of SYSCO slag for acid mine drainage treatment (NSERC Engage)	\$23,750 (2017/18) (Walsh 100%)
M. Walsh	Membrane technology for municipal wastewater systems (NSERC Engage)	\$22,765 (2016) (Walsh 100%)
M. Walsh & J. Rand (Acadia)	Waste Residuals & Distribution System Technology Advancements for Ion Exchange Processes in Drinking Water Treatment <i>NSERC CRD Grant</i>	\$174,800 (2013-2015) (Walsh 90 %)
M. Walsh	Oxidation-Filtration Technology for Water Treatment System at Moosehead Breweries Ltd. <i>NSERC Engage Grant</i>	\$22,000 (2012) (Walsh 100 %)
M. Walsh	Dissolved Air Flotation Performance in High Intensity Runoff Conditions NSERC Engage Grant	\$18,250 (2012) (Walsh 100 %)
M. Walsh	Innovative Technology Development Approaches for Organic Removal in Water Treatment <i>NSERC Discovery Grant</i>	\$168,000 (2011-18) (Walsh 100 %)
G.A. Gagnon, M.Walsh & C.B. Lake	Enhanced treatment for offshore oil & gas produced water discharges <i>Petroleum Research Atlantic</i> <i>Canada (PRAC) / NSERC CRD</i>	\$280,000 (2010-12) (Walsh 33 %)
M.Walsh	Bench-scale treatability study for Saint John Water Saint John Water, Saint John, NB	\$15,142 (2009-10) (Walsh 100 %)
G.A. Gagnon, M. Walsh & C.B. Lake	Size Exclusion Chromatography for Analysis of Water Treatment NSERC Research Tools &	\$88,984 2007-08 (Walsh 33 %)

	Instruments	
M. Walsh	Infrastructure for Advanced Process Design in Water & Wastewater Treatment	\$310,333 2007-09 (Walsh 100 %)
	Canadian Foundation for Innovation (CFI, Leaders Opportunity Fund)	
G.A. Gagnon, D. Mavinic, S.A. Andrews, P.B. Berube & M. Walsh	Drinking Water Strategies for Small Systems: Avoiding Unintended Consequences of Water Regulations <i>NSERC Strategic Grant</i>	\$536,841 2007-10 (Walsh 15 %)
M. Walsh & C.B. Lake (DAL)	Investigation into the Use of Cement Kiln Dust (CKD) for Wastewater Treatment Portland Cement Association/Cement Assocation of Canada (PCA/CAC) – Research Contract	\$117,520 2007-09 (Walsh 100 %)
R.C. Andrews (UT), M. Walsh, P. Huck (U Waterloo), M. Prevost (E.Polytechnique), P. Berube (UBC)	Advancement of Membrane Processes for Canadian Drinking Water Treatment Facilities <i>Canadian Water Network Strategic</i> <i>Research Proposals</i>	\$200,000 2006-08 Project Extension with Additional Funding \$150,000 2008-10 (Walsh 20 %)
G.A. Gagnon & M. Walsh	Real-time polymerase chain reaction for assessment of drinking water safety NSERC Research Tools & Instruments	\$69,500 2005-06 (Walsh 10 %)
M.Walsh	Reclamation Strategies for Water Treatment Plant Waste Residuals NSERC Discovery Grant	\$85,000 2005-10 (Walsh 100 %)

ACADEMIC & PROFESSIONAL SERVICE

Professional Memberships

- American Water Works Association (AWWA) (2002-present)
- Association of Professional Engineers of Nova Scotia (APENS) (2000-present)
- Mitacs College of Reviewers (COR) (2013-present)

- Water Environment Federation (WEF) (2014-2016)
- Mining Association of Nova Scotia (MANS) (2008-2011)

Research & Professional Awards

- 2017: Engineers Nova Scotia Award for the Advancement of Women in Engineering
- 2016: Dalhousie Undergraduate Engineering Society (DUES) Teaching Award (Civil Engineering)
- 2014: Ira P. MacNab Award (ACWWA)
- 2011: NSERC Discovery Grant
- 2007: Leader's Opportunity Fund, Canadian Foundation for Innovation
- 2005: NSERC Discovery Grant
- 2003: University Forum Best Oral Presentation, Ontario Water Works Association (OWWA) Annual Meeting

Professional Activity in Faculty of Engineering (Dalhousie University)

- 2015 present: Graduate Attributes Committee
- 2014 -2015: Strategic Planning Committee, Faculty of Engineering
- 2014 present: Academic Appeals Committee
- 2013: Decanal Review Committee, Faculty of Architecture & Planning
- 2011: Search Committee Graduate Studies, Dean of Graduate Studies
- 2009 2011: Graduate Studies Committee
- 2009 2012: Academic Appeals Committee
- 2008 2011: NSERC PGS-M Review Committee
- 2008 -09: Core Curriculum Review Committee
- 2007: Open House Coordinator for 100 Year Celebrations
- 2007: Review Committee Member (NSAC MSc Program in Agriculture)

Professional Activity in Department of Civil and Resource Engineering

- 2015 present: Department Representative for Faculty of Engineering Graduate Attributes Committee
- 2009 2011: Graduate Studies Coordinator, Civil & Resource Engineering Dept.
- 2007 2009: Recruiting Coordinator, Civil Engineering Program
- 2007 2008: Sr. Design Project Coordinator, Civil Engineering Program

Professional Activity in Industry Associations

- 2016 present: Secretary/Treasurer, The Ritual of Calling of an Engineer, Camp 7, Halifax, Nova Scotia
- 2014 2018: NSERC Strategic Partnership Grants, Environmental Science and Technologies (EST) Review Panel Member
- 2014-present: Alternate Warden & Warden, The Ritual of Calling of an Engineer, Camp 7, Halifax, Nova Scotia
- 2013 214: Chair Atlantic Canada Water & Wastewater Association (ACWWA) Executive Board.
- 2011 2013: Councilor, Engineers Nova Scotia.

- 2011 2012: Regional Director Atlantic, Executive Committee and Board of Directors for Canadian Association on Water Quality (CAWQ)
- 2008 2011: Technical Director, Board of Directors for Atlantic Canada Water & Wastewater Association (ACWWA)
- 2008 2011: Chair Technical Papers (ACWWA)
- 2005 2010: Residuals Research Management Committee, American Water Works Association (AWWA)
- 2008 2015: Literature Review Committee Member, Water Environment Federation (WEF)
- 2005 present: Engineers Nova Scotia, Engineer-In-Training Mentor (currently mentoring 5 EITs)

Engineering Outreach

- 2014-present: Mentor and active participant in *TECHSPLORATION*
- 2007-2010: Coordinator for *High School Science & Engineering Week (Dalhousie Engineering)*
- 2009: Participant in *Go Eng Girl* student developed career event (Saint Mary's University)
- 2005-2008: Instructor/Role Model for Let's Talk Science

Journal Reviewer

- Journal of American Water Works Association
- Water Research
- Water Quality Research Journal of Canada
- Journal of Environmental Engineering & Science
- Separation Science & Technology
- Pulp & Paper Canada
- Journal of Water Supply: Research & Technology AQUA
- Environmental Technology
- Journal of Membrane Science.